CERTIFICATE COURSE IN CNC TURNING (CCCT)

curriculum

Ministry of Micro, Small and Medium Enterprises, New Delhi (MSME-Technology Centre)

COURSE NAME: Engineering Drawing-Theory

COURSE CODE: CCCM-01

COURSE OUTCOMES:

After completion of course Student should be able to

- Describe and explain various Drawing Equipments.
- Understand of engineering Dimensioning method and their application.
- Explain and demonstrate four quadrants
- Explain the projection of points front view, top view and side view
- Understand of Surface development of geometrical object.
- State Meaning of orthographic projection
- Distinguish between Isometric view and Isometric projections.
- Distinguish between temporary and permanent fastenings
- Preparation of assembly drawing and surface finish symbol

PRACTICAL MARKS:

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
Unit I	Drawing equipm ents	 After completion of unit Student should be able to Use of Drawing Instrument and Purpose. Use of different grade of Pencils Under stand of drawing sheet lay out. Explain and demonstrate use of scales. 	Explain the use of, Drawing board, T - square Set square, Mini drafter, Instrument box, Protractors, French curves Identify the different grades of pencils HB, H, 2H, 3H.Classify the different sizes of drawing sheets according to B.I.S. Describe the layout of Drawing sheets and their contents. Give idea about Letters and numerals Explain the use of scales – Enlarging, Reducing, full scale and representative fraction.	3	2	
Unit II	Dimensi oning Techniq ues	 After completion of unit Student should be able to Identify and use of different types of lines. Use of co-ordinate dimensioning Under stand of dimensioning Diameter, Radii, Chords, angles . 	State the types of lines and their uses. Identify different dimensioning methods. Use Chain, parallel and combined dimensioning. Use aligned and unidirectional system of dimensioning in given situation. Use co-ordinate dimensioning, methods of dimensioning Diameter, Radii, Chords, angles.	3	2	

Unit III	Recogni ze the points in various quadran ts	 After completion of unit Student should be able to Understand of four quadrants. Use of different Plane Understand of front view, top view and side view 	Explain all four quadrants Identify Horizontal plane, Vertical plane and Profile plane. Explain the projection of points – front view, top view and side view (both left and right).	4	4
Unit IV	Develop ment of surfaces of objects	 After completion of unit Student should be able to Use of parallel line and radial line methods Understand of Development of surfaces with section s 	Illustrate the Development of surfaces by parallel line and radial line methods Draw the development of surfaces of geometrical objects and utility objects Draw Development of surfaces with section plane inclined to HP and Perpendicular to VP Draw development of Solids resting completely on its base	4	4
Unit V	Orthogr aphic projecti on of machin e parts	 After completion of unit Student should be able to Meaning of orthographic projection 	State Meaning of orthographic projection Draw elevation, plan and side elevation of the machine parts like stepped block, fork lever, bearing block, etc.	4	4
Unit VI	Isometri c projecti on and views of solids and machin e parts	 After completion of unit Student should be able to Distinguish between Isometric view and Isometric projections Understand of Use of different Isometric view of different geometrical objects and machine parts 	Describe the use of Isometric scale Distinguish between Isometric view and Isometric projections To draw the Isometric view of different geometrical objects and machine parts Convert orthographic views into isometric view	4	4
Unit VII	Tempor ary fastenin gs used in enginee ring applicat ions	 After completion of unit Student should be able to Use of Drawing Instrument and Purpose. Use of different grade of Pencils Under stand of drawing sheet lay out. Explain and demonstrate use of scales 	Distinguish between temporary and permanent fastenings Draw the profiles of different screw threads Show the representation of screw threads with conventional symbols Draw the three views of hexagonal headed bolt with hexagonal nut Draw the two views of square headed bolt with square nut	4	5
Unit VIII	Prepara tion of	After completion of unit Student should be able to	hinge C-clamp	6	5

	assembl Y drawing	 Understand of assembly drawing Identify parts of the assembly Parts drawing 	Drill base and table Tool makers clamp Drill jig Plumber block, etc.			
Unit IX	Surface finish symbols	 After completion of unit Student should be able to Understand of symbols of surface finish. Understand of machining allowance Under stand of special drawing instruction. 	Indication Special surface Direction of lay Machining allowance Position of symbol Symbols with inscriptions Additional indications	4	5	
Unit X	Prepara tion of detail drawing , assembl y and part list	 After completion of unit Student should be able to Understand of drawing of Jigs & fixture. Able to draw different parts of tools. 	Jigs & fixtures Screw jack Pipe vice Tail stock Swivel bearing Plumber block Machine vice Shaper tool head Machine elements	8	5	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Engineering Drawing-Theory

Course Code : CCCT-01

Teaching and Examination Scheme:

Teaching Scheme			Examinatio	on Scheme	
ТН	PR	PAPER HRS	TH	PR	TOTAL
46	-	02	40	-	40

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Engineering Drawing theory is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Engineering Drawing theory is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Engineering Drawing theory is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Describe and explain various Drawing Equipments.
- 2. Understand of engineering Dimensioning method and their application.
- 3. Explain and demonstrate four quadrants
- 4. Explain the projection of points front view, top view and side view
- 5. Understand of Surface development of geometrical object.
- 6. State Meaning of orthographic projection
- 7. Distinguish between Isometric view and Isometric projections.
- 8. Distinguish between temporary and permanent fastenings
- 9. Preparation of assembly drawing and surface finish symbol

Theory: Engineering Drawing

Topic and Contents	Hours	Marks
Topic 1: Drawing equipments		
Objective:		
Use of Drawing Instrument and Purpose.		
Use of different grade of Pencils		
Under stand of drawing sheet lay out.		
Explain and demonstrate use of scales.	3	2
Explain the use of, Drawing board, T - square Set square, Mini drafter, Instrument box, Protractors,		
French curves Identify the different grades of pencils HB, H, 2H, 3H. Classify the different sizes of drawing		
sheets according to B.I.S. Describe the layout of Drawing sheets and their contents. Give idea about		
Letters and numerals Explain the use of scales - Enlarging, Reducing, full scale and representative		
fraction.		
Topic 2: Dimensioning Techniques		
Objective:		
Identify and use of different types of lines.		
Use of co-ordinate dimensioning	3	2
Under stand of dimensioning Diameter, Radii, Chords, angles.	5	Z
State the types of lines and their uses. Identify different dimensioning methods. Use Chain, parallel and		
combined dimensioning. Use aligned and unidirectional system of dimensioning in given situation. Use		
co-ordinate dimensioning, methods of dimensioning Diameter, Radii, Chords, angles.		
Topic 3: Recognize the points in various quadrants		
Objective:		
Understand of four quadrants.		
Use of different Plane	4	4
Understand of front view, top view and side view		
Explain all four quadrants Identify Horizontal plane, Vertical plane and Profile plane. Explain the		
projection of points – front view, top view and side view (both left and right).		
Topic 4: Development of surfaces of objects		
Objective:		
Use of parallel line and radial line methods		-
Understand of Development of surfaces with sections	4	4
Illustrate the Development of surfaces by parallel line and radial line methods, Draw the development of		
surfaces of geometrical objects and utility objects, Draw Development of surfaces with section plane		

inclined to HP and Perpendicular to VP, Draw development of Solids resting completely on its base		
Topic 5: Orthographic projection of machine parts		
Objective:		
Meaning of orthographic projection	4	4
State Meaning of orthographic projection, Draw elevation, plan and side elevation of the machine parts		
like stepped block, fork lever, bearing block, etc.		
Topic 6: Isometric projection and views of solids and machine parts		
Objective:		
Distinguish between Isometric view and Isometric projections		
Understand of Use of different Isometric view of different geometrical objects and machine		
parts	4	4
Describe the use of Isometric scale, Distinguish between Isometric view and Isometric projections, To		
draw the Isometric view of different geometrical objects and machine parts, Convert orthographic views		
into isometric view		
Topic 7: Temporary fastenings used in engineering applications		
Objective:		
Use of Drawing Instrument and Purpose.		
Use of different grade of Pencils		
Under stand of drawing sheet lay out.	4	5
Explain and demonstrate use of scales		
Distinguish between temporary and permanent fastenings, Draw the profiles of different screw threads,		
Show the representation of screw threads with conventional symbols, Draw the three views of hexagonal		
headed bolt with hexagonal nut, Draw the two views of square headed bolt with square nut		
Topic 8: Preparation of assembly drawing		
Objective:		
Understand of assembly drawing	c	
Identify parts of the assembly	6	5
Parts drawing		
Hinge, C-clamp, Drill base and table, Tool makers clamp, Drill jig, Plumber block, etc.		
Topic 9: Surface finish symbols		
Objective:		
Understand of symbols of surface finish.		
Understand of machining allowance	4	5
Under stand of special drawing instruction.		
Indication, Special surface, Direction of lay, Machining allowance, Position of symbol, Symbols with		
inscriptions, Additional indications		
Topic 10: Preparation of detail drawing, assembly and part list		
Objective:		
Understand of drawing of Jigs & fixture.		-
Able to draw different parts of tools.	8	5
Jigs & fixtures, Screw jack, Pipe vice, Tail stock, Swivel bearing, Plumber block, Machine vice, Shaper tool		
head, Machine elements		
	1	

Learning Resources:

1. Books: Engineering Drawing

SI. No.	Author	Title	Publisher
1	A k Xavier and S	Text Book of Engg Drawing Se-I To IV	JKP
	Radhakrishnan		
2	Neelkanth	ITI Workbook Engineering Drawing	neelkantha
		(Mechanical)	
3	Neelkanth	ITI Workbook Engineering Drawing	Neelkantha
		Mechanical Group	
4	N.D. Bhat/ panchal	Engineering Drawing	
5	M.L. Anwani	Basic Engineering Drawing	
6	N.D.Bhatt	Engineering Drawing	
7	Mali & Choudhari	Engineering Drawing	Runda
8	M.L.Ananwani	Basic Engineering Drawing	Dhanpatrai & Co.
9	M.L.Ananwani	Basic Engineering Drawing	Dhanpatrai & Co.
10	S. K. Arya	Engineering Drawing	Asian Publisher
11	A. K. Xavier	Engineering Drawing	J.K.P.Publications
12	Ghorleg	Engineering Drawing Work book	Ghorleg Publishing

COURSE NAME: Engineering Drawing - Practical

COURSE CODE: CCCT-02

COURSE OUTCOMES:

After completion of course Student should be able to

- Describe and explain various Drawing Equipments.
- Understand of engineering Dimensioning method and their application.
- Explain and demonstrate four quadrants
- Explain the projection of points front view, top view and side view
- Understand of Surface development of geometrical object.
- State Meaning of orthographic projection
- Distinguish between Isometric view and Isometric projections.
- Distinguish between temporary and permanent fastenings
- Preparation of assembly drawing and surface finish symbol

THEORY HOURS: 46	PRACTICAL HOURS: 44

THEORY MARKS:

PRACTICAL MARKS: 60

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hours	Marks	
Unit I	Drawing equipments	After completion of unit Student should be able to • Use of Drawing Instrument and Purpose. • Use of different grade of Pencils • Under stand of drawing sheet lay out. • Explain and demonstrat e use of scales.	Explain the use of, Drawing board, T - square Set square, Mini drafter, Instrument box, Protractors, French curves Identify the different grades of pencils HB, H, 2H, 3H.Classify the different sizes of drawing sheets according to B.I.S. Describe the layout of Drawing sheets and their contents. Give idea about Letters and numerals Explain the use of scales – Enlarging, Reducing, full scale and representative fraction.	4	6	
Unit II	Dimensioning Techniques	After completion of unit Student should	State the types of lines and their uses.	4	6	

		 be able to Identify and use of different types of lines. Use of coordinate dimensionin g Under stand of dimensionin g Diameter, Radii, Chords, angles. 	Identify different dimensioning methods. Use Chain, parallel and combined dimensioning. Use aligned and unidirectional system of dimensioning in given situation. Use co-ordinate dimensioning, methods of dimensioning Diameter, Radii, Chords, angles.			
Unit III	Recognize the points in various quadrants	After completion of unit Student should be able to • Understand of four quadrants. • Use of different Plane • Understand of front view, top view and side view	Explain all four quadrants Identify Horizontal plane, Vertical plane and Profile plane. Explain the projection of points – front view, top view and side view (both left and right).	4	6	
Unit IV	Development of surfaces of objects	After completion of unit Student should be able to • Use of parallel line and radial line methods • Understand of Developme nt of surfaces with section	Illustrate the Development of surfaces by parallel line and radial line methods Draw the development of surfaces of geometrical objects and utility objects Draw Development of surfaces with section plane inclined to HP and Perpendicular to VP Draw development of Solids resting completely on its base	4	6	

		S			
Unit V	Orthographic projection of machine parts	After completion of unit Student should be able to • Meaning of orthographi c projection	State Meaning of orthographic projection Draw elevation, plan and side elevation of the machine parts like stepped block, fork lever, bearing block, etc.	4	6
Unit VI	Isometric projection and views of solids and machine parts	After completion of unit Student should be able to Distinguish between Isometric view and Isometric projections Understand of Use of different Isometric view of different geometrical objects and machine parts	Describe the use of Isometric scale Distinguish between Isometric view and Isometric projections To draw the Isometric view of different geometrical objects and machine parts Convert orthographic views into isometric view	4	6
Unit VII	Temporary fastenings used in engineering applications	After completion of unit Student should be able to • Use of Drawing Instrument and Purpose. • Use of different grade of Pencils • Under stand of drawing sheet lay out. Explain and	Distinguish between temporary and permanent fastenings Draw the profiles of different screw threads Show the representation of screw threads with conventional symbols Draw the three views of hexagonal headed bolt with hexagonal nut Draw the two views of square headed bolt with square nut	4	6

		demonstrate use of scales				
Unit VIII	Preparation of assembly drawing	After completion of unit Student should be able to • Understand of assembly drawing • Identify parts of the assembly • Parts drawing	hinge C-clamp Drill base and table Tool makers clamp Drill jig Plumber block, etc.	4	6	
Unit IX	Surface finish symbols	After completion of unit Student should be able to • Understand of symbols of surface finish. • Understand of machining allowance • Under stand of special drawing instruction.	Indication Special surface Direction of lay Machining allowance Position of symbol Symbols with inscriptions Additional indications	4	6	
Unit X	Preparation of detail drawing, assembly and part list	After completion of unit Student should be able to • Understand of drawing of Jigs & fixture. • Able to draw different parts of tools.	Jigs & fixtures Screw jack Pipe vice Tail stock Swivel bearing Plumber block Machine vice Shaper tool head Machine elements	4	6	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Engineering Drawing-Practical

Course Code : CCCT-02

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme				
TH	PR	PAPER HRS	TH	PR	TOTAL	
-	44	04	-	60	60	

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Engineering Drawing Practical is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Engineering Drawing Practical is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Engineering Drawing practical is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Describe and explain various Drawing Equipments.
- 2. Understand of engineering Dimensioning method and their application.
- 3. Explain and demonstrate four quadrants
- 4. Explain the projection of points front view, top view and side view
- 5. Understand of Surface development of geometrical object.
- 6. State Meaning of orthographic projection
- 7. Distinguish between Isometric view and Isometric projections.
- 8. Distinguish between temporary and permanent fastenings
- 9. Preparation of assembly drawing and surface finish symbol

Practical: Engineering Drawing

Topic and Contents	Hours	Marks
Topic 1: Drawing equipments		
Objective:		
Use of Drawing Instrument and Purpose.		
Use of different grade of Pencils		
Under stand of drawing sheet lay out.		
Explain and demonstrate use of scales.	4	6
Explain the use of, Drawing board, T - square Set square, Mini drafter, Instrument box,	4	
Protractors, French curves Identify the different grades of pencils HB, H, 2H, 3H.Classify the		
different sizes of drawing sheets according to B.I.S. Describe the layout of Drawing sheets and		
their contents. Give idea about Letters and numerals Explain the use of scales - Enlarging,		
Reducing, full scale and representative fraction.		
Topic 2: Dimensioning Techniques		
Objective:		
Identify and use of different types of lines.		
Use of co-ordinate dimensioning		
Under stand of dimensioning Diameter, Radii, Chords, angles.	4	6
State the types of lines and their uses. Identify different dimensioning methods. Use Chain,		
parallel and combined dimensioning. Use aligned and unidirectional system of dimensioning in		
given situation. Use co-ordinate dimensioning, methods of dimensioning Diameter, Radii,		
Chords, angles.		
Topic 3: Recognize the points in various quadrants		
Objective:		
Understand of four quadrants.		
Use of different Plane	4	6
Understand of front view, top view and side view		
Explain all four quadrants Identify Horizontal plane, Vertical plane and Profile plane. Explain the		
projection of points – front view, top view and side view (both left and right).		
Topic 4: Development of surfaces of objects		
Objective:		
Use of parallel line and radial line methods	4	6
Understand of Development of surfaces with sections	4	
Illustrate the Development of surfaces by parallel line and radial line methods, Draw the		

development of surfaces of geometrical objects and utility objects, Draw Development of		
surfaces with section plane inclined to HP and Perpendicular to VP, Draw development of Solids		
resting completely on its base		
Topic 5: Orthographic projection of machine parts		
Objective:		
Meaning of orthographic projection	4	6
State Meaning of orthographic projection, Draw elevation, plan and side elevation of the		
machine parts like stepped block, fork lever, bearing block, etc.		
Topic 6: Isometric projection and views of solids and machine parts		
Objective:		
 Distinguish between Isometric view and Isometric projections 		
 Understand of Use of different Isometric view of different geometrical objects and 		
	4	6
machine parts	4	6
Describe the use of Isometric scale, Distinguish between Isometric view and Isometric		
projections, To draw the Isometric view of different geometrical objects and machine parts,		
Convert orthographic views into isometric view		
Topic 7: Temporary fastenings used in engineering applications		
Objective:		
-		
Use of Drawing Instrument and Purpose.		
Use of different grade of Pencils		
Under stand of drawing sheet lay out.	4	6
Explain and demonstrate use of scales	4	0
Distinguish between temporary and permanent fastenings, Draw the profiles of different screw		
threads, Show the representation of screw threads with conventional symbols, Draw the three		
views of hexagonal headed bolt with hexagonal nut, Draw the two views of square headed bolt		
with square nut		
Topic 8: Preparation of assembly drawing		
Objective:		
 Understand of assembly drawing 		
	4	6
Identify parts of the assembly		
Parts drawing		
Hinge, C-clamp, Drill base and table, Tool makers clamp, Drill jig, Plumber block, etc.		
Topic 9: Surface finish symbols		
Objective:		
Understand of symbols of surface finish.		
Understand of machining allowance	4	6
Under stand of special drawing instruction.		
Indication, Special surface, Direction of lay, Machining allowance, Position of symbol, Symbols		
with inscriptions, Additional indications		
Topic 10: Preparation of detail drawing, assembly and part list		
Objective:		
 Understand of drawing of Jigs & fixture. 		
 Able to draw different parts of tools. 	4	6
Jigs & fixtures, Screw jack, Pipe vice, Tail stock, Swivel bearing, Plumber block, Machine vice,		
Shaper tool head, Machine elements		

Learning Resources:

Books: Engineering Drawing

SI. No.	Author	Title	Publisher
1	A k Xavier and S	Text Book of Engg Drawing Se-I To IV	JKP
	Radhakrishnan		
2	Neelkanth	ITI Workbook Engineering Drawing	neelkantha
		(Mechanical)	
3	Neelkanth	ITI Workbook Engineering Drawing	Neelkantha
		Mechanical Group	
4	N.D. Bhat/ panchal	Engineering Drawing	
5	M.L. Anwani	Basic Engineering Drawing	
6	N.D.Bhatt	Engineering Drawing	
7	Mali & Choudhari	Engineering Drawing	Runda
8	M.L.Ananwani	Basic Engineering Drawing	Dhanpatrai & Co.
9	M.L.Ananwani	Basic Engineering Drawing	Dhanpatrai & Co.
10	S. K. Arya	Engineering Drawing	Asian Publisher
11	A. K. Xavier	Engineering Drawing	J.K.P.Publications
12	Ghorleg	Engineering Drawing Work book	Ghorleg Publishing

COURSE NAME: Engineering Metrology -Theory

COURSE CODE: CCCT-03

COURSE OUTCOMES:

After completion of course Student should be able to

- Describe and explain various metrological terms like line standards, end standards , calibration etc
- Explain and demonstrate instruments like Slip gauges, photoelectric microscope
- Explain and demonstrate various gauges like NPL gauge
- Classify & describe various measuring machines like Floating carriage diameter measuring m/c etc
- Calibrate and explain Calibration of line standards
- Predict and examine various modes and types of errors and also the demonstration of devices used for measurement.
- Evaluate and do analysis of parameters of screw threads

THEORY	HOURS:	22	PR/

ACTICAL HOURS:22 THEORY MARKS:40

PRACTICAL MARKS:

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to basic Metrology	 After completion of unit Student should be able to Describe and explain End and line standards. Explain use and manufacturing of Slip gauges Demonstrate and use of Slip gauges Explain and demonstrate various gauges 	End & line standards for length, Airy & Bessel points, Desirable features of end standards, slip gauge manufacture, calibration of end standards by interferometry. Measurement of large displacements using lasers, Photoelectric Autocollimator, calibration of polygons & circular scales. Types of interchangeability, dimensional chains	4	8	
UNIT-II	Fixed & Indicating Gauges	After completion of unit Student should be able to • Explain and demonstrate various gauges	Comparators: Multi angle Sigma comparator, Back pressure and free flow type pneumatic comparators, Differential back pressure gauge, usage of different types of jets, contact & non- contact tooling. Amplification selection. Air to electric transducer, Differential	4	8	

		 Understand and demonstrate comparators like multi angle, sigma comparators 	transducer, Variation transducer, Preprocess, In-process & Post process gauging, computation & match gauging. Usage of LVDT & Capacitive type gauge heads, Automatic inspection		
UNIT-III	Measuring Machines	After completion of unit Student should be able to Explain various measuring machines Demonstrate and explain Optical dividing head Annalise the co-ordinate systems and its applications	Floating carriage diameter measuring m/c. Universal measuring m/c. Matrix internal diameter measuring machine. Optical dividing head. Coordinate measuring machine, Optical projector-light beam systems, Work tables, measurement techniques, fixture & accessories. Sources of error in measurement. Design principles of measuring machines Abbe's rule, Kelvin coupling, flexible steel strip, advantages & limitations of hydrostatic & aerostatic bearings	4	8
UNIT-IV	Form Errors	After completion of unit Student should be able to Evaluate straightness & flatness Explain and demonstrate comparators Evaluate roundness – intrinsic & extrinsic datum Demonstrate the equipment for surface testing	Evaluation of straightness & flatness, usage of beam comparator, evaluation of roundness – intrinsic & extrinsic datums. Surface Finish: stylus instrument (TALYSURF). M & E Systems, numerical assessment, vertical & horizontal descriptors, profile as a random process, usage of interferograms. Plastic replica technique	4	8
UNIT-V	Screw Threads	After completion of unit Student should be able to • Evaluate and do analysis of parameters of screw threads • Identify and	Measurement of thread elements for internal & external threads, progressive periodic, drunkenness and irregular pitch errors. NPL pitch measuring machine, virtual effective diameter, thread gauging. Gears: measurement of tooth thickness, involute profile, pitch, concentricity and alignment, rolling gear test.	6	8

understand		
pitch errors		
Determine		
and describe		
various		
methods of		
measurement		
s of gear		
terminology		

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Engineering Metrology - Theory

Course Code : CCCT-03

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme				
ТН	PR	PAPER HRS	TH	PR	TOTAL	
22	-	02	40	-	40	

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Engineering Metrology Theory is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Engineering Metrology Theory is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Engineering Metrology Theory is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Describe and explain various metrological terms like line standards, end standards, calibration etc
- 2. Explain and demonstrate instruments like Slip gauges, photoelectric microscope
- 3. Explain and demonstrate various gauges like NPL gauge
- 4. Classify & describe various measuring machines like Floating carriage diameter measuring m/c etc
- 5. Calibrate and explain Calibration of line standards
- 6. Predict and examine various modes and types of errors and also the demonstration of devices used for measurement.
- 7. Evaluate and do analysis of parameters of screw threads
- 8. Determine and describe various methods of measurements of gear terminology

Theory: Engineering Metrology

Topic and Contents	Hours	Marks
Topic 1: Introduction to basic Metrology	4	8
Objective:		
Describe and explain End and line standards.		
Explain use and manufacturing of Slip gauges		
Demonstrate and use of Slip gauges		
Explain and demonstrate various gauges		
End & line standards for length, Airy & Bessel points, Desirable features of end standards, slip		
gauge manufacture, calibration of end standards by interferometry. NPL gauge interferometer,		
calibration of line standards by micrometer microscope - superposition, coincidence and		
symmetric straddling, photoelectric microscope and Moir fringe techniques, measurement of large		
displacements using lasers, Photoelectric Autocollimator, calibration of polygons & circular scales.		
Types of interchangeability, dimensional chains.		
Topic 2: Fixed & Indicating Gauges	4	8
Objective:		
Explain and demonstrate various gauges		
Understand and demonstrate comparators like multi angle, sigma comparators		
Comparators: Multi angle Sigma comparator, Back pressure and free flow type pneumatic		
comparators, Differential back pressure gauge, usage of different types of jets, contact & non-		
contact tooling. Amplification selection. Air to electric transducer, Differential transducer, Variation		
transducer, Preprocess, In-process & Post process gauging, computation & match gauging.		_
Topic 3: Measuring Machines	4	8
Objective:		
Explain various measuring machines		
Demonstrate and explain Optical dividing head		
Annalise the co-ordinate systems and its applications		
Understand and explain Design principals of measuring machines		
Floating carriage diameter measuring m/c. Universal measuring m/c. Matrix internal diameter		
measuring machine. Optical dividing head. Coordinate measuring machine, Work tables,		
measurement techniques, fixture & accessories. Sources of error in measurement. Design principles		
of measuring machines Abbe's rule, Kelvin coupling, flexible steel strip, advantages & limitations of		
hydrostatic & aerostatic bearings.	4	0
Topic 4: Form Errors	4	8
Objective:		

Evaluate straightness & flatness		
Explain and demonstrate comparators		
Evaluate roundness – intrinsic & extrinsic datum		
Demonstrate the equipment for surface testing		
Evaluation of straightness & flatness, usage of beam comparator, evaluation of roundness -		
intrinsic & extrinsic datums. Surface Finish: stylus instrument (TALYSURF). M & E Systems,		
numerical assessment, vertical & horizontal descriptors, profile as a random process, usage of		
interferograms. Plastic replica technique.		
Topic 5: Screw Threads	6	8
Objective:		
Evaluate and do analysis of parameters of screw threads		
Identify and understand pitch errors		
Determine and describe various methods of measurements of gear terminology,		
Measurement of thread elements for internal & external threads, progressive periodic,		
drunkenness and irregular pitch errors. NPL pitch measuring machine, virtual effective diameter,		
a dimensional megular pitch errors. With pitch medsuring machine, virtual enective diameter,		

Books: Engineering Metrology

SI. No.	Author	Title	Publisher
1	Gaylor, Shotbolt and Sharp	Metrology for Engineers	O.R.Cassel, London
2	R.K.Jain	Engineering Metrology	Khanna Publishers
3	Thomas	Engineering Metrology	Butthinson & Co.
4	Graham T. Smith	Industrial Metrology	Springer-Verlag London
5	White house, D. J,	Handbook of Surface & Nanometrology	The institute of Physics, London
6	M.Mahajan	A text - Book of Metrology	Dhanpat Rai & Co. (P) Ltd

References and other study material are available at – 1.http://www.mitcalc.com/doc/tolerances/help/en/tolerances.htm 2. http://www.ecs.umass.edu/mie/labs/mda/dlib/fit_tol/fitandtol.htm

COURSE NAME: Engineering Metrology -Practical

COURSE CODE: CCCT-04

COURSE OUTCOMES:

After completion of course Student should be able to

- Describe and explain various metrological terms like line standards, end standards , calibration etc
- Explain and demonstrate instruments like Slip gauges, photoelectric microscope
- Explain and demonstrate various gauges like NPL gauge
- Classify & describe various measuring machines like Floating carriage diameter measuring m/c etc
- Calibrate and explain Calibration of line standards
- Predict and examine various modes and types of errors and also the demonstration of devices used for measurement.
- Evaluate and do analysis of parameters of screw threads

THEORY HOURS: 22	PRA
------------------	-----

ACTICAL HOURS:22 THEORY MARKS:

PRACTICAL MARKS:60

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
UNIT-I	Introduction to basic Metrology	 After completion of unit Student should be able to Describe and explain End and line standards. Explain use and manufacturing of Slip gauges Demonstrate and use of Slip gauges Explain and demonstrate various gauges 	End & line standards for length, Airy & Bessel points, Desirable features of end standards, slip gauge manufacture, calibration of end standards by interferometry. Measurement of large displacements using lasers, Photoelectric Autocollimator, calibration of polygons & circular scales. Types of interchangeability, dimensional chains	4	12
UNIT-II	Fixed & Indicating Gauges	After completion of unit Student should be able to Explain and demonstrate various gauges	Comparators: Multi angle Sigma comparator, Back pressure and free flow type pneumatic comparators, Differential back pressure gauge, usage of different types of jets, contact & non- contact tooling. Amplification selection. Air to electric transducer, Differential	4	12

		 Understand and demonstrate comparators like multi angle, sigma comparators 	transducer, Variation transducer, Preprocess, In-process & Post process gauging, computation & match gauging. Usage of LVDT & Capacitive type gauge heads, Automatic inspection		
UNIT-III	Measuring Machines	After completion of unit Student should be able to Explain various measuring machines Demonstrate and explain Optical dividing head Annalise the co-ordinate systems and its applications	Floating carriage diameter measuring m/c. Universal measuring m/c. Matrix internal diameter measuring machine. Optical dividing head. Coordinate measuring machine, Optical projector-light beam systems, Work tables, measurement techniques, fixture & accessories. Sources of error in measurement. Design principles of measuring machines Abbe's rule, Kelvin coupling, flexible steel strip, advantages & limitations of hydrostatic & aerostatic bearings	4	12
UNIT-IV	Form Errors	After completion of unit Student should be able to Evaluate straightness & flatness Explain and demonstrate comparators Evaluate roundness – intrinsic & extrinsic datum Demonstrate the equipment for surface testing	Evaluation of straightness & flatness, usage of beam comparator, evaluation of roundness – intrinsic & extrinsic datums. Surface Finish: stylus instrument (TALYSURF). M & E Systems, numerical assessment, vertical & horizontal descriptors, profile as a random process, usage of interferograms. Plastic replica technique	4	12
UNIT-V	Screw Threads	After completion of unit Student should be able to • Evaluate and do analysis of parameters of screw threads • Identify and	Measurement of thread elements for internal & external threads, progressive periodic, drunkenness and irregular pitch errors. NPL pitch measuring machine, virtual effective diameter, thread gauging. Gears: measurement of tooth thickness, involute profile, pitch, concentricity and alignment, rolling gear test.	6	12

understand	
pitch errors	
Determine	
and describe	
various	
methods of	
measurement	
s of gear	
terminology	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Engineering Metrology - Practical

Course Code : CCCT-04

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
TH	PR	PAPER HRS	TH	PR	TOTAL
-	22	02	-	60	60

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Engineering Metrology Theory is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Engineering Metrology Theory is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Engineering Metrology Theory is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Describe and explain various metrological terms like line standards, end standards, calibration etc
- 2. Explain and demonstrate instruments like Slip gauges, photoelectric microscope
- 3. Explain and demonstrate various gauges like NPL gauge
- 4. Classify & describe various measuring machines like Floating carriage diameter measuring m/c etc
- 5. Calibrate and explain Calibration of line standards
- 6. Predict and examine various modes and types of errors and also the demonstration of devices used for measurement.
- 7. Evaluate and do analysis of parameters of screw threads
- 8. Determine and describe various methods of measurements of gear terminology

Practical: Engineering Metrology

Topic and Contents	Hours	Marks
Topic 1: Introduction to basic Metrology	4	12
Objective:		
Describe and explain End and line standards.		
Explain use and manufacturing of Slip gauges		
Demonstrate and use of Slip gauges		
Explain and demonstrate various gauges		
End & line standards for length, Airy & Bessel points, Desirable features of end standards, slip		
gauge manufacture, calibration of end standards by interferometry. NPL gauge interferometer,		
calibration of line standards by micrometer microscope - superposition, coincidence and		
symmetric straddling, photoelectric microscope and Moir fringe techniques, measurement of large		
displacements using lasers, Photoelectric Autocollimator, calibration of polygons & circular scales.		
Types of interchangeability, dimensional chains.		
Topic 2: Fixed & Indicating Gauges	4	12
Objective:		
Explain and demonstrate various gauges		
Understand and demonstrate comparators like multi angle, sigma comparators		
Comparators: Multi angle Sigma comparator, Back pressure and free flow type pneumatic		
comparators, Differential back pressure gauge, usage of different types of jets, contact & non-		
contact tooling. Amplification selection. Air to electric transducer, Differential transducer, Variation		
transducer, Preprocess, In-process & Post process gauging, computation & match gauging. Topic 3: Measuring Machines	4	12
Objective:	4	12
•		
Explain various measuring machines		
Demonstrate and explain Optical dividing head		
Annalise the co-ordinate systems and its applications		
> Understand and explain Design principals of measuring machines		
Floating carriage diameter measuring m/c. Universal measuring m/c. Matrix internal diameter measuring machine. Optical dividing head. Coordinate measuring machine, Work tables,		
measurement techniques, fixture & accessories. Sources of error in measurement. Design principles		
of measuring machines Abbe's rule, Kelvin coupling, flexible steel strip, advantages & limitations of		
hydrostatic & aerostatic bearings.		
Topic 4: Form Errors	4	12
Objective:		
 Evaluate straightness & flatness 		
	1	1

Explain and demonstrate comparators		
Evaluate roundness – intrinsic & extrinsic datum		
Demonstrate the equipment for surface testing		
Evaluation of straightness & flatness, usage of beam comparator, evaluation of roundness -		
intrinsic & extrinsic datums. Surface Finish: stylus instrument (TALYSURF). M & E Systems,		
numerical assessment, vertical & horizontal descriptors, profile as a random process, usage of		
interferograms. Plastic replica technique.		
Topic 5: Screw Threads	6	12
Objective:		
Evaluate and do analysis of parameters of screw threads		
Identify and understand pitch errors		
Determine and describe various methods of measurements of gear terminology,		
Measurement of thread elements for internal & external threads, progressive periodic,		
drunkenness and irregular pitch errors. NPL pitch measuring machine, virtual effective diameter,		
thread gauging.		

Books: Engineering Metrology

SI. No.	Author	Title	Publisher
1	Gaylor, Shotbolt and Sharp	Metrology for Engineers	O.R.Cassel, London
2	R.K.Jain	Engineering Metrology	Khanna Publishers
3	Thomas	Engineering Metrology	Butthinson & Co.
4	Graham T. Smith	Industrial Metrology	Springer-Verlag London
5	White house, D. J,	Handbook of Surface & Nanometrology	The institute of Physics, London
6	M.Mahajan	A text - Book of Metrology	Dhanpat Rai & Co. (P) Ltd

References and other study material are available at – 1.http://www.mitcalc.com/doc/tolerances/help/en/tolerances.htm 2. http://www.ecs.umass.edu/mie/labs/mda/dlib/fit_tol/fitandtol.htm

COURSE NAME: Workshop Technology - Theory

COURSE CODE: CCCT-05

COURSE OUTCOMES:

After completion of course Student should be able to:

- Metal working technique, Lathe Machine , Turning tools and Tool Geometry , Turning operations & safety.
- Taper Turning Methods, Thread cutting methods.
- Calculate Cutting Speed and rpm.
- Lathe machines like Turret lathe, Capston lathe
- Calculate Speeds & Feeds and Calculation of Machining time.

THEORY HOURS: 46 PRACTICAL HOURS: 44 THEORY MARKS: 40 PRACTICAL MARKS:

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hour s	Mark s
UNIT-I	Single point cutting tools	After completion of unit Student should be able to • Demonstrate and explain pedestal grinding machine • Demonstrate and explain single point cutting tool • Tool terminologies	Bench & pedestal grinders, features. Wheel dressers, Safety. Construction, Cutting Tool shape & Geometry, Work Holding Devices, Cutting Speed feed and depth of cut.	6	5
UNIT- II	Lathe machine	After completion of unit Student should be able to Demonstrate and explain lathe machine Demonstrate and explain lathe machine accessories Demonstrate and explain lathe machine attachments	Centre lathe and its parts , Specification of a center lathe, Parts, head stock, Lathe bed, Carriage, Feed mechanism, Tool paste, Tail stock, work holding devices, Chucks – 3 jaws, 4 jaws, Self centering , Independent. Face plate. Work supporting accessories, Catch plate, Driving plate, Tail stock center Lathe dogs, Fixed study rest, Traveling study rest, Collets, Mandrels.	6	5
UNIT- III	Types of cutting tools	After completion of unit Student should be able to • Demonstrate and	HSS, Carbide, Diamond, Ceramic, Tool angles and their functions, Roughing tools, Finishing tools	6	6

		explain different types of turning tools • Demonstrate and explain lathe machine accessories and attachments.	Plain turning (1) L.H. tool, (2) R.H. tool, Facing tool, Threading tool, Boring tool, Profile tool, Parting of or end cutting tool. Tool holders, Holders for tool bit, Tool post, Clamping plate, Four way tool post, Single roller knurling tool holder, Joint type knurling tool holder, Revolving head knurling tool.			
UNIT- IV	Types of lathe operations	After completion of unit Student should be able to Demonstrate and explain different types of turning operations	Plain, Steps, Square shoulder, Filleted shoulder, Beveled shoulder, Parting, Boring, Grooving, Facing, Threading, Profile, Drilling, Tapping, Reaming, Counter boring, Knurling, Trepanning operation.	6	6	
UNIT- V	Taper turning	After completion of unit Student should be able to • Demonstrate and explain different types of taper turning methods.	Form tool method, Compound slide method, Offset tail stock, Taper turning attachment, Effect of tool position, Taper calculations, eccentric turning, Calculations, Aids, Inspection, copy turning, Equipment, Hydraulic, Mechanical, Templates.	6	6	
UNIT- VI	Thread cutting	After completion of unit Student should be able to Demonstrate and explain thread cutting techniques on lathe machine	Gear setting, Inch conversion, Metric threads from inch lead screw, Inch threads from metric lead screw, Multistart threads, Threading dial, Right & left hand threads, External & internal threads, Thread Terminology, inch, metric, pitch, square profile, saw tooth, pipe threads	8	6	
UNIT- VII	Turning parameters	After completion of unit Student should be able to • Calculate various parameters of turning operation	Calculation OF R.P.M , Cutting speed, Diameter of work piece, Tables Feeds & depth of cut, Material Cutting Tools, Cutting angles, Feed in mm per revolution, Calculation of machining time , Setting time, Machining time, Auxiliary time, Delay time, Total time	8	6	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Workshop Technology - Theory

Course Code : CCCT-05

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
46	-	02	40	-	40

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Workshop Technology Theory is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Workshop Technology Theory is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Workshop Technology Theory is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Metal working technique, Lathe Machine, Turning tools and Tool Geometry, Turning operations & safety.
- 2. Taper Turning Methods, Thread cutting methods.
- 3. Calculate Cutting Speed and rpm.
- 4. Lathe machines like Turret lathe, Capston lathe
- 5. Calculate Speeds & Feeds and Calculation of Machining time.

Theory: Workshop Technology

Topic and Contents	Hours	Marks
Topic 1: Single point cutting tools		
Objective:		
explain pedestal grinding machine		
explain single point cutting tool	6	5
Tool terminologies		
Bench & pedestal grinders, features. Wheel dressers, Safety. Construction, Cutting Tool shape &		
Geometry, Work Holding Devices, Cutting Speed feed and depth of cut.		
Topic 2: Lathe machine		
Objective:		
explain lathe machine		
 explain lathe machine accessories explain lathe machine attachments 		-
	6	5
Centre lathe and its parts , Specification of a center lathe, Parts, head stock, Lathe bed, Carriage,		
Feed mechanism, Tool paste, Tail stock, work holding devices, Chucks – 3 jaws, 4 jaws, Self centering, Independent. Face plate. Work supporting accessories, Catch plate, Driving plate, Tail		
stock center Lathe dogs, Fixed study rest, Traveling study rest, Collets, Mandrels.		
Topic 3: Types of cutting tools		
Objective:		
 explain different types of turning tools 		
 explain lathe machine accessories and attachments. 		
HSS, Carbide, Diamond , Ceramic, Tool angles and their functions, Roughing tools, Finishing tools	6	6
Plain turning (1) L.H. tool, (2) R.H. tool, Facing tool, Threading tool, Boring tool, Profile tool, Parting		
of or end cutting tool. Tool holders, Holders for tool bit, Tool post, Clamping plate, Four way tool		
post, Single roller knurling tool holder, Joint type knurling tool holder, Revolving head knurling tool.		
Topic 4: Types of lathe operations		
Objective:		
explain different types of turning operations		
Plain, Steps, Square shoulder, Filleted shoulder, Beveled shoulder, Parting, Boring, Grooving,	6	6
Facing, Threading, Profile, Drilling, Tapping, Reaming, Counter boring, Knurling, Trepanning		
operation.		
Topic 5: Taper turning		
Objective:	6	c
explain different types of taper turning methods.	Ö	6
Form tool method, Compound slide method, Offset tail stock, Taper turning attachment, Effect of		

tool position, Taper calculations, eccentric turning, Calculations, Aids, Inspection, copy turning,		
Equipment, Hydraulic, Mechanical, Templates.		
Topic 6: Thread cutting		
Objective:		
explain thread cutting techniques on lathe machine	0	<i>c</i>
Gear setting, Inch conversion, Metric threads from inch lead screw, Inch threads from metric lead	8	6
screw, Multistart threads, Threading dial, Right & left hand threads, External & internal threads,		
Thread Terminology, inch, metric, pitch, square profile, saw tooth, pipe threads		
Topic 7: Turning parameters		
Objective:		
Calculate various parameters of turning operation	8	6
Calculation OF R.P.M , Cutting speed, Diameter of work piece, Tables Feeds & depth of cut, Material	ð	O
Cutting Tools, Cutting angles, Feed in mm per revolution, Calculation of machining time, Setting		
time, Machining time, Auxiliary time, Delay time, Total time		

Books: Workshop Technology

SI. No.	Author	Title	Publisher
1	Rajendra Singh	Introduction to Basic Manufacturing Processes & Worhshop Technology.	New Age International (P) Limited, Publishers
2	V. Ramesh Babu	Engineering Work shop practice for JNTU	VRB Publishers Pvt. Ltd
3	P.Kannaiah/ K.L.Narayana	Work shop Manual	SciTech Publishers
4	S. K. Hajra Choudhury, Nirjhar Roy, A. K. Hajra Choudhury	Elements of Workshop Technology (Volume - 1)	Media Promoters Pvt. Ltd.
5	W. A. J. Chapman	Workshop Technology	Edward Arnold

COURSE NAME: Workshop Technology - Practical

COURSE CODE: CCCT-06

COURSE OUTCOMES:

After completion of course Student should be able to:

- Metal working technique, Lathe Machine , Turning tools and Tool Geometry , Turning operations & safety.
- Taper Turning Methods, Thread cutting methods.
- Calculate Cutting Speed and rpm.
- Lathe machines like Turret lathe, Capston lathe
- Calculate Speeds & Feeds and Calculation of Machining time.

THEORY HOURS: 46 PRACTICAL HOURS: 44 THEORY MARKS: PRACTICAL MARKS: 60

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hour s	Mark s	
UNIT-I	Single point cutting tools	 After completion of unit Student should be able to Demonstrate and explain pedestal grinding machine Demonstrate and explain single point cutting tool Tool terminologies 	Bench & pedestal grinders, features. Wheel dressers, Safety. Construction, Cutting Tool shape & Geometry, Work Holding Devices, Cutting Speed feed and depth of cut.	6	5	
UNIT- II	Lathe machine	After completion of unit Student should be able to Demonstrate and explain lathe machine Demonstrate and explain lathe machine accessories Demonstrate and explain lathe machine attachments	Centre lathe and its parts , Specification of a center lathe, Parts, head stock, Lathe bed, Carriage, Feed mechanism, Tool paste, Tail stock, work holding devices, Chucks – 3 jaws, 4 jaws, Self centering , Independent. Face plate. Work supporting accessories, Catch plate, Driving plate, Tail stock center Lathe dogs, Fixed study rest, Traveling study rest, Collets, Mandrels.	6	5	
UNIT- III	Types of cutting tools	After completion of unit Student should be able to • Demonstrate and	HSS, Carbide, Diamond, Ceramic, Tool angles and their functions, Roughing tools, Finishing tools	6	10	

		 explain different types of turning tools Demonstrate and explain lathe machine accessories and attachments. 	Plain turning (1) L.H. tool, (2) R.H. tool, Facing tool, Threading tool, Boring tool, Profile tool, Parting of or end cutting tool. Tool holders, Holders for tool bit, Tool post, Clamping plate, Four way tool post, Single roller knurling tool holder, Joint type knurling tool holder, Revolving head knurling tool.			
UNIT- IV	Types of lathe operations	After completion of unit Student should be able to Demonstrate and explain different types of turning operations	Plain, Steps, Square shoulder, Filleted shoulder, Beveled shoulder, Parting, Boring, Grooving, Facing, Threading, Profile, Drilling, Tapping, Reaming, Counter boring, Knurling, Trepanning operation.	6	10	
UNIT- V	Taper turning	After completion of unit Student should be able to Demonstrate and explain different types of taper turning methods.	Form tool method, Compound slide method, Offset tail stock, Taper turning attachment, Effect of tool position, Taper calculations, eccentric turning, Calculations, Aids, Inspection, copy turning, Equipment, Hydraulic, Mechanical, Templates.	6	10	
UNIT- VI	Thread cutting	After completion of unit Student should be able to Demonstrate and explain thread cutting techniques on lathe machine	Gear setting, Inch conversion, Metric threads from inch lead screw, Inch threads from metric lead screw, Multistart threads, Threading dial, Right & left hand threads, External & internal threads, Thread Terminology, inch, metric, pitch, square profile, saw tooth, pipe threads	8	10	
UNIT- VII	Turning parameters	After completion of unit Student should be able to Calculate various parameters of turning operation	Calculation OF R.P.M , Cutting speed, Diameter of work piece, Tables Feeds & depth of cut, Material Cutting Tools, Cutting angles, Feed in mm per revolution, Calculation of machining time , Setting time, Machining time, Auxiliary time, Delay time, Total time	6	10	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Workshop Technology - Practical

Course Code : CCCT-06

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
TH	PR	PAPER HRS	TH	PR	TOTAL
-	44	04	-	60	60

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Workshop Technology Theory is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Workshop Technology Theory is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Workshop Technology Theory is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Metal working technique, Lathe Machine, Turning tools and Tool Geometry, Turning operations & safety.
- 2. Taper Turning Methods, Thread cutting methods.
- 3. Calculate Cutting Speed and rpm.
- 4. Lathe machines like Turret lathe, Capston lathe
- 5. Calculate Speeds & Feeds and Calculation of Machining time.

Practical: Workshop Technology

Topic and Contents	Hours	Marks
Topic 1: Single point cutting tools		
Objective:		
explain pedestal grinding machine		
explain single point cutting tool	6	5
Tool terminologies		
Bench & pedestal grinders, features. Wheel dressers, Safety. Construction, Cutting Tool shape &		
Geometry, Work Holding Devices, Cutting Speed feed and depth of cut.		
Topic 2: Lathe machine		
Objective:		
> explain lathe machine		
explain lathe machine accessories	_	-
explain lathe machine attachments	6	5
Centre lathe and its parts, Specification of a center lathe, Parts, head stock, Lathe bed, Carriage,		
Feed mechanism, Tool paste, Tail stock, work holding devices, Chucks – 3 jaws, 4 jaws, Self		
centering , Independent. Face plate. Work supporting accessories, Catch plate, Driving plate, Tail		
stock center Lathe dogs, Fixed study rest, Traveling study rest, Collets, Mandrels.		
Topic 3: Types of cutting tools		
Objective:		
explain different types of turning tools		
explain lathe machine accessories and attachments.	6	10
HSS, Carbide, Diamond, Ceramic, Tool angles and their functions, Roughing tools, Finishing tools		
Plain turning (1) L.H. tool, (2) R.H. tool, Facing tool, Threading tool, Boring tool, Profile tool, Parting		
of or end cutting tool. Tool holders, Holders for tool bit, Tool post, Clamping plate, Four way tool		
post, Single roller knurling tool holder, Joint type knurling tool holder, Revolving head knurling tool.		
Topic 4: Types of lathe operations		
Objective:		
explain different types of turning operations	6	10
Plain, Steps, Square shoulder, Filleted shoulder, Beveled shoulder, Parting, Boring, Grooving,		
Facing, Threading, Profile, Drilling, Tapping, Reaming, Counter boring, Knurling, Trepanning		
operation.		
Topic 5: Taper turning		
Objective:	6	10
explain different types of taper turning methods.		
Form tool method, Compound slide method, Offset tail stock, Taper turning attachment, Effect of		

tool position, Taper calculations, eccentric turning, Calculations, Aids, Inspection, copy turning,		
Equipment, Hydraulic, Mechanical, Templates.		
Topic 6: Thread cutting		
Objective:		
explain thread cutting techniques on lathe machine	c	10
Gear setting, Inch conversion, Metric threads from inch lead screw, Inch threads from metric lead	6	10
screw, Multistart threads, Threading dial, Right & left hand threads, External & internal threads,		
Thread Terminology, inch, metric, pitch, square profile, saw tooth, pipe threads		
Topic 7: Turning parameters		
Objective:		
Calculate various parameters of turning operation	0	10
Calculation OF R.P.M , Cutting speed, Diameter of work piece, Tables Feeds & depth of cut, Material	8	10
Cutting Tools, Cutting angles, Feed in mm per revolution, Calculation of machining time, Setting		
time, Machining time, Auxiliary time, Delay time, Total time		

Books: Workshop Technology

SI. No.	Author	Title	Publisher
1	Rajendra Singh	Introduction to Basic Manufacturing Processes & Worhshop Technology.	New Age International (P) Limited, Publishers
2	V. Ramesh Babu	Engineering Work shop practice for JNTU	VRB Publishers Pvt. Ltd
3	P.Kannaiah/ K.L.Narayana	Work shop Manual	SciTech Publishers
4	S. K. Hajra Choudhury, Nirjhar Roy, A. K. Hajra Choudhury	Elements of Workshop Technology (Volume - 1)	Media Promoters Pvt. Ltd.
5	W. A. J. Chapman	Workshop Technology	Edward Arnold

COURSE NAME: Workshop Calculation

COURSE CODE: CCCT-07

COURSE OUTCOMES:

THEORY HOURS: 96

After completion of course Student should be able to:

- Geometrical construction & theorem: division of line segment, parallel lines, similar angles, perpendicular lines, isosceles triangle and right angled triangle
- Area of cut-out regular surfaces: circle and segment and sector of circle.
- Volume of cut-out solids: hollow cylinders, frustum of cone, block section. Volume of simple machine blocks.
- Material weight and cost problems related to trade.
- Finding the value of unknown sides and angles of a triangle by Trigonometrical method.
- Finding height and distance by trigonometry.
- Application of trigonometry in shop problems. (viz. taper angle calculation).

PRACTICAL HOURS:

• Graph: -Read images, graphs, diagrams-bar chart, pie chart. Graphs: abscissa and ordinates, graphs of straight line, related to two sets of varying quantities.

THEORY MARKS: -100

PRACTICAL MARKS:

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH	Marks
				hours	
UNIT-I	UNITS RATIO & PROPORTION	After completion of unit Student should be able to • systems (British & metric) of units, measurement, relationship & conversion problems • types of proportion, direct, indirect and mixed-application of ratio and proportion	UNITS : Introduction, systems (British & metric) of units, measurement, relationship & conversion problems. Numbers and their types. Fundamental operations of decimal and whole numbers, fraction and decimal conversions and simplifications, methods to find out square root. RATIO & PROPORTION: Definition, types of proportion, direct, indirect and mixed- application of ratio and proportion to trade related problems.	14	20

UNIT-II	DENSITY PERCENTAGE	After completion of unit Student should be able to • Calculate Density • Calculate Percentage	DENSITY:- Definition of mass & weight. density and relative density and comparison between them. Archimedes principles, Law of floatation with example R.D of solid, R.D of liquid calculation. Calculation of weight of material. Problems. PERCENTAGE: Definition, changing percentage to decimal and fraction and vice versa. Applied problems related to trade.	20	20	
UNIT-III	ALGEBRA MENSURATIO N	 After completion of unit Student should be able to Algebra operations and algebra formula derivations and problems. Factorization of equations like simple, simultaneous, quadratic. Learning to use calculator. Pythagoras theorem, geometry & properties of 2D & 3D figures, Area, perimeter and other dimension determination of plane 	ALGEBRA:- Fundamental algebra operations and simplification problems- algebra formula derivations and problems. Factorization of equations like simple, simultaneous, quadratic. Learning to use calculator. MENSURATION:- Introduction. Pythagoras theorem, geometry & properties of 2D & 3D figures, Area, perimeter and other dimension determination of plane geometrical figures(2D figures) such as square, rectangle, parallelogram, rhombus, trapezium, all types of triangles polygons, circles, sector and segment of circles and practical related exercise.	20	20	

UNIT-IV	TRIGONOMET RY GRAPH	 After completion of unit Student should be able to Trigonometrically rations, Relationship between them- Measurement of angles, Trigonometric tables. Solutions of triangles-finding height & distance using trigonometry. Sine bar, taper turning. GRAPH: Introduction Procedure of drawing graph, 	TRIGONOMETRY:Introduction.Trigonometricallyrations,Relationshipbetweenthem-Measurementofangles,Trigonometric tables.Formulae and their proof. Valuesfor certain anglesTRIGNOMETRYAPPICATONS:Solutionsoftriangles-findingheight&distanceusingtrigonometry.Sinebar,taperturningproblemsandotherpractical problems.GRAPH:Introduction - Procedureofofdrawinggraph,solvingofalgebraic equations.Solvingofalgebraic equations.	20	20	
	Indiana	solving of algebraic equations.	ALCERRA: Indiana Concent and			
UNIT-V	Indices Quadratic equations	 After completion of unit Student should be able to Indices, Concept and rules. Application of Quadratic equations. Area & Volume of different geometrical shapes (2D & 3D). Measurement of angles in degrees, grades and radians and their conversions. Compound angles, multiple angles, and sub-multiple angles (2A, 3A, A/2) inverse circular functions. 	 AlGEBRA: Indices, Concept and rules, Examples on indices. Application of Quadratic equations. MENSURETION: Area & Volume of different geometrical shapes (2D & 3D). TRIGNOMETRY: Concept of angles, measurement of angles in degrees, grades and radians and their conversions. Review of ratios of some standard angles (0, 30,45,60,90 degrees), Compound angles, multiple angles, and sub-multiple angles (2A, 3A, A/2) inverse circular functions. 	20	20	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Workshop Calculation

Course Code : CCCT-07

Teaching and Examination Scheme:

Teaching Scheme			Examinatio	on Scheme	
ТН	PR	PAPER HRS	TH	PR	TOTAL
94	-	02	100	-	100

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Workshop Calculation is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Workshop Calculation is regarded as a core skill set which supplement hard skill in all CNC Operator. Recognizing this importance of the core skill, the subjects of Workshop Calculation is made integral part of all CNC Operator for Certificate Course In Turning under MSME (NSQF).

- 1. Geometrical construction & theorem: division of line segment, parallel lines, similar angles, perpendicular lines, isosceles triangle and right angled triangle
- 2. Area of cut-out regular surfaces: circle and segment and sector of circle.
- 3. Volume of cut-out solids: hollow cylinders, frustum of cone, block section. Volume of simple machine blocks.
- 4. Material weight and cost problems related to trade.
- 5. Finding the value of unknown sides and angles of a triangle by Trigonometrical method.
- 6. Finding height and distance by trigonometry.
- 7. Application of trigonometry in shop problems. (viz. taper angle calculation).
- 8. Graph: -Read images, graphs, diagrams-bar chart, pie chart. Graphs: abscissa and ordinates, graphs of straight line, related to two sets of varying quantities.

Theory: Workshop Calculation

Topic and Contents	Hours	Marks
Topic 1: UNITS RATIO & PROPORTION		
Objective:		
 systems (British & metric) of units, measurement, relationship & conversion problems types of proportion, direct, indirect and mixed-application of ratio and proportion 		
UNITS : Introduction, systems (British & metric) of units, measurement, relationship & conversion problems. Numbers and their types. Fundamental operations of decimal and whole numbers, fraction and decimal conversions and simplifications, methods to find out square root. RATIO & PROPORTION: Definition, types of proportion, direct, indirect and mixed-application of ratio and proportion to trade related problems.	14	20
Topic 2: DENSITY PERCENTAGE		
Objective:		
Calculate Density		
Calculate Percentage		
DENSITY:- Definition of mass & weight. density and relative density and comparison between	20	20
them. Archimedes principles, Law of floatation with example R.D of solid, R.D of liquid calculation.		
Calculation of weight of material. Problems.		
PERCENTAGE: Definition, changing percentage to decimal and fraction and vice versa. Applied		
problems related to trade.		
Topic 3: ALGEBRA MENSURATION		
 Objective: Algebra operations and algebra formula derivations and problems. Factorization of equations like simple, simultaneous, quadratic. Learning to use calculator. Pythagoras theorem, geometry & properties of 2D & 3D figures, Area, perimeter and other dimension determination of plane 	20	20
ALGEBRA:- Fundamental algebra operations and simplification problems- algebra formula	20	20
derivations and problems. Factorization of		
equations like simple, simultaneous, quadratic. Learning to use calculator.		
MENSURATION:- Introduction. Pythagoras theorem, geometry & properties of 2D & 3D figures,		
Area, perimeter and other dimension determination of plane geometrical figures(2D figures) such		
as square, rectangle, parallelogram, rhombus, trapezium, all types of triangles polygons, circles,		

sector and segment of circles and practical related exercise.		
Topic 4: TRIGONOMETRY GRAPH		
Objective:		
Trigonometrically rations, Relationship between them-Measurement of angles, Trigonometric tables.		
Solutions of triangles-finding height & distance using trigonometry. Sine bar, taper turning.		
GRAPH: Introduction - Procedure of drawing graph, solving of algebraic equations.	20	20
TRIGONOMETRY: Introduction. Trigonometrically rations, Relationship between them-		
Measurement of angles, Trigonometric tables.		
Formulae and their proof. Values for certain angles		
TRIGNOMETRY APPICATONS: Solutions of triangles-finding height & distance using trigonometry.		
Sine bar, taper turning problems and other practical problems.		
GRAPH: Introduction - Procedure of drawing graph, solving of algebraic equations.		
Topic 5: Indices Quadratic equations		
Objective:		
Indices, Concept and rules.		
Application of Quadratic equations.		
Area & Volume of different geometrical shapes (2D & 3D).		
Measurement of angles in degrees, grades and radians and their conversions.		
Compound angles, multiple angles, and sub-multiple angles (2A, 3A, A/2) inverse circular	20	20
functions.	20	20
AIGEBRA: Indices, Concept and rules, Examples on indices. Application of Quadratic equations.		
MENSURETION: Area & Volume of different geometrical shapes (2D & 3D).		
TRIGNOMETRY: Concept of angles, measurement of angles in degrees, grades and radians and		
their conversions. Review of ratios of some standard angles (0, 30,45,60,90 degrees),		
Compound angles, multiple angles, and sub-multiple angles (2A, 3A, A/2) inverse circular		
functions.		

Books: Workshop Calculation

SI. No.	Author	Title	Publisher
1	A. K. Xavior	Workshop Calculations and Science	JKP
2	Baseshankar	Workshop Calculations and Science	Vijayshree
3	Kapil Dev	Workshop Calculations and Science	Asian Pub.
4	L.R.Hans / M Lanwani	Basic Workshop Calculation & Science	Dhanpat Ray& Co.Lim
5	R. Pande	Workshop Calculation & Science	Amul

COURSE NAME: Quality Management System

COURSE CODE: CCCT-08

COURSE OUTCOMES:

After completion of course Student should be able to:

- Describe the basic concepts, terminology and overcome legislative framework in the subject area of quality, quality control and quality management system
- Describe ways of applying quality management in the actual organization,
- Demonstrate the capability of making quality process for the selected process,
- Perceiving the organization to determine the existence or nonexistence of the implemented quality management system,

THEORY HOURS: 46	PRACTICAL HOURS:	THEORY MARKS: -100	PRACTICAL MARKS:	
------------------	------------------	--------------------	------------------	--

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Mark s	
UNIT-I	Introducti on	 After completion of unit Student should be able to to use quality management concepts easily Peculiarities of evolution of quality management and its significance for the management of modern organizations 	Introduction: Importance of quality in the management of company. Concepts of quality management. Quality dimensions of goods and services. Quality management evolution and works of quality gurus.	06	10	
UNIT-II	Quality policy and quality organizati ons	 After completion of unit Student should be able to Analyse quality features of products and services; principles of standardization and conformity assessment; 	Quality policy and quality organizations: International and Indian quality organizations. Indian quality policy. International, regional and national standardization. System of assessment of quality conformity in Indian.	06	10	
UNIT-III	Managem ent systems and quality	After completion of unit Student should be able to • Peculiarities of implementation, certification and audit	Managementsystemsandqualitymanagementprinciplesforexcellence:Qualitymanagementsystems.Qualitycontrolmethods.	06	10	

UNIT-IV	managem ent principles for excellenc e Total quality managem ent TQM PRINCIPLE S	 of quality management systems; The usage of quality control methods for the analysis and solution of organizations' problems. After completion of unit Student should be able to Explain the meaning of total quality management (TQM). Identify costs of quality. Describe the evolution of TQM. Identify key leaders in the field of quality and their contributions. Identify features of the TQM philosophy. Describe tools for identifying and solving quality problems. Describe quality awards and quality certifications. 	Quality audit and certification of management systems. Sustainable development. Environment management systems. Occupational health and safety management system. Eco-labelling. Total quality management. INTRODUCTION: Definition of Quality, Dimensions of Quality, Quality Planning, Basic concepts of Total Quality Management, Principles of TQM, Quality Council, Quality Statements, Strategic Planning. TQM PRINCIPLES: Customer satisfaction - Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement - Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal. TQM TOOLS : Benchmarking - Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) - House of Quality, Total Productive Maintenance (TPM) - Concept, Improvement Needs. KAIZEN, Quality Circles, Quality Models for organizational excellence. 7 QC tools, 7 New Quality Management Tools.	08	10	
UNIT-V	Quality System	After completion of unit Student should be able to ISO 9000, ISO 9000:2000 TS 16949, ISO 14000	QUALITY SYSTEMS: Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System - Elements, Implementation of Quality System, Documentation, Quality Auditing, TS 16949, ISO 14000 - Concept, Requirements and Benefits.	06	20	

UNIT-VI	55	After completion of unit Student should be able to • Sort • Straighten • Standardize • Sustain	Purpose of 5S: 5S Creates a Visual Factory, The 5S Cycle, 5S Activities Explained, The Purpose and Payoff of 5S, Remove the Roadblocks in the Way, 5S Program Overview. 5S Program Steps: Workplace Observation, Set a Target Area Vision, The Power of a Shared Vision, What You See Before 5S, What You See After 5S, After 5S -Easy to Find, Easy to Do. Sort– keep only what is needed Today, Red Tag Process, Red Tag Inspection List, Red Tagged Items Log. Straighten–find it fast; faster, Put Order and Sense into the Workplace, Set-in-Place to Make Life Easy, Visual Control of Tool Storage, Visual Management of Inventory and Stock, Straighten the Workflow, Straighten Check Sheet. Shine– see problems when they are small, Shine Check Sheet, Plan Who, What, How to Clean. Standardize–the same rules for all, Set Standards for Condition and Use of Tools and Equipment. Sustain– this is how we do it here, Weekly and Monthly Feedback on Performance, Workplace Measurement Checklist – tracking your performance weekly, Tracking Your Performance Monthly.	08	20	
UNIT-VII	Six Sigma Fundame ntals	 After completion of unit Student should be able to Methodology Process Improvement Model (DMAIC) Six Sigma Organization, Six Sigma Implementation Requirements 	Six Sigma Fundamentals: Basic Concept, Methodology, Process Improvement Model (DMAIC) Steps (Objectives, Tools and Techniques Used), Six Sigma Organization, Six Sigma Implementation Requirements, Introduction to Lean Six Sigma.	06	20	

Program Name : CERTIFICATE COURSE IN TURNING

Course Title : Quality Management System

Course Code : CCCT-08

Teaching and Examination Scheme:

Teaching Scheme			Examinatio	on Scheme	
ТН	PR	PAPER HRS	TH	PR	TOTAL
46	-	02	100	-	100

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Quality Management System is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Quality Management System is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Quality Management System is made integral part of all CNC Operator for Certificate Course In Turning under MSME (NSQF).

- 1. Describe the basic concepts, terminology and overcome legislative framework in the subject area of quality, quality control and quality management system
- 2. Describe ways of applying quality management in the actual organization,
- 3. Demonstrate the capability of making quality process for the selected process,
- 4. Perceiving the organization to determine the existence or nonexistence of the implemented quality management system,
- 5. Demonstrate the capability of making quality process, given the well-known process, identify the standard that could be applied, the roles and responsibilities of reference legislative framework
- 6. Choose the optimal approach to the analysis of a given process by describing the activities

Theory: Quality Management System

Topic and Contents	Hours	Marks
Topic 1: Introduction		
Objective:		
to use quality management concepts easily		
Peculiarities of evolution of quality management	06	10
and its significance for the management of modern organizations	00	10
Introduction: Importance of quality in the management of company. Concepts of		
quality management. Quality dimensions of goods and services. Quality management		
evolution and works of quality gurus.		
Topic 2: Quality policy and quality organizations		
Objective:		
Analyse quality features of products and services;		
Principles of standardization and conformity assessment;	06	10
Quality policy and quality organizations: International and Indian quality organizations.		
Indian quality policy. International, regional and national standardization. System of		
assessment of quality conformity in Indian.		
Topic 3: Management systems and quality management principles for excellence		
Objective:		
Peculiarities of implementation, certification and audit of quality management		
systems;		
> The usage of quality control methods for the analysis and solution of		10
organizations' problems.	06	10
Management systems and quality management principles for excellence: Quality		
management systems. Quality control methods. Quality audit and certification of		
management systems. Sustainable development. Environment management systems.		
Occupational health and safety management system. Eco-labelling. Total quality		
management. Topic 4: Total quality management & TQM PRINCIPLES		
Objective:		
 Explain the meaning of total quality management (TQM). 	08	10
 Identify costs of quality. 	00	10
 Describe the evolution of TQM. 		

	1	
Identify key leaders in the field of quality and their contributions.		
Identify features of the TQM philosophy.		
Describe tools for identifying and solving quality problems.		
Describe quality awards and quality certifications.		
➢ KAIZEN		
INTRODUCTION: Definition of Quality, Dimensions of Quality, Quality Planning, Basic		
concepts of Total Quality Management, Principles of TQM, Quality Council, Quality		
Statements, Strategic Planning.		
TQM PRINCIPLES: Customer satisfaction - Customer Perception of Quality, Customer		
Complaints, Service Quality, Customer Retention, Employee Involvement - Motivation,		
Empowerment, Teams, Recognition and Reward, Performance Appraisal.		
TQM TOOLS : Benchmarking - Reasons to Benchmark, Benchmarking Process, Quality		
Function Deployment (QFD) - House of Quality, Total Productive Maintenance (TPM) -		
Concept, Improvement Needs. KAIZEN, Quality Circles, Quality Models for organizational		
excellence. 7 QC tools, 7 New Quality Management Tools.		
Topic 5: Quality System		
Objective:		
➢ ISO 9000,		
➢ ISO 9000:2000		
➤ TS 16949,	06	20
➢ ISO 14000		
QUALITY SYSTEMS: Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality		
System - Elements, Implementation of Quality System, Documentation, Quality Auditing, TS		
16949, ISO 14000 - Concept, Requirements and Benefits.		
Topic 6: 5S		
Objective:		
> Sort		
 Straighten 		
 Straighten Shine 		
> Standardize		
> Sustain		
Purpose of 5S: 5S Creates a Visual Factory, The 5S Cycle, 5S Activities Explained, The Purpose		
and Payoff of 5S, Remove the Roadblocks in the Way, 5S Program Overview.		
5S Program Steps: Workplace Observation, Set a Target Area Vision, The Power of a Shared	08	20
Vision, What You See Before 5S, What You See After 5S, After 5S - Easy to Find, Easy to Do.		
Sort-keep only what is needed Today, Red Tag Process, Red Tag Inspection List, Red Tagged		
Items Log. Straighten-find it fast; faster, Put Order and Sense into the Workplace, Set-in-		
Place to Make Life Easy, Visual Control of Tool Storage, Visual Management of Inventory and		
Stock, Straighten the Workflow, Straighten Check Sheet. Shine-see problems when they are		
small, Shine Check Sheet, Plan Who, What, How to Clean. Standardize-the same rules for all,		
Set Standards for Condition and Use of Tools and Equipment. Sustain- this is how we do it		
here, Weekly and Monthly Feedback on Performance, Workplace Measurement Checklist -		
tracking your performance weekly, Tracking Your Performance Monthly.		
Topic 7: Six Sigma Fundamentals		
Objective:		
> Methodology	06	20
 Process Improvement Model (DMAIC) 		

- Six Sigma Organization,
- Six Sigma Implementation Requirements

Six Sigma Fundamentals: Basic Concept, Methodology, Process Improvement Model (DMAIC) Steps (Objectives, Tools and Techniques Used), Six Sigma Organization, Six Sigma Implementation Requirements, Introduction to Lean Six Sigma.

Books: Quality Management System

SI. No.	Author	Title	Publisher
1	James O. Westgard,	Basic Quality Management Systems	Published by Westgard
	Sten A. Westgard		QC, Inc.
2	David Hoyle	ISO 9000 Quality Systems Handbook	OXFORD AUCKLAND
			BOSTON JOHANNESBURG
			MELBOURNE NEW DELHI
3	Dale H. Besterfield	Total Quality Management	Pearson Education;

COURSE NAME: Group Discussion and Personality Improvement

COURSE CODE: CCCT-09

COURSE OUTCOMES:

After completion of course Student should be able to:

- To develop communication competence in prospective students.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

THEORY HOURS: 46

PRACTICAL HOURS:

THEORY MARKS: -100

PRACTICAL MARKS:

Unit	Unit	Unit level	Contents (chapters/topics)	TH hours	Marks
No.	Name	outcomes			
UNIT-I	Communi cation Skill	After completion of unit Student should be able to Listening Skills Writing Skills Technical Writing Letter Writing Job Application Report Writing	Communication Skill : Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.	11	25

UNIT-II	Critical Thinking & Problem Solving	After completion of unit Student should be able to Lateral thinking Critical thinking Multiple Intelligence Problem Solving Six thinking hats Mind Mapping & Analytical Thinking	Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats Mind Mapping & Analytical Thinking.	11	25	
UNIT-III	Teamwor k	After completion of unit Student should be able to • Team formation process • Stages of Group • Group Dynamics • Managing Team Performan ce & Team Conflicts	Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.	12	25	
UNIT-IV	Ethics, Moral & Professio nal Values	After completion of unit Student should be able to • Human Values • Civic Rights • Operator Ethics • Operator as Social Experiment ation • Environme ntal Ethics	Ethics, Moral & Professional Values: Human Values, Civic Rights, Operator Ethics, Operator as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.	12	25	

Program Name : CERTIFICATE COURSE IN TURNING

Course Title : Group Discussion and Personality Improvement

Course Code : CCCT-09

Teaching and Examination Scheme:

Teaching Scheme			Examinatio	on Scheme	
ТН	PR	PAPER HRS	TH	PR	TOTAL
46	-	02	100	-	100

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read Group Discussion and Personality Improvement is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus Group Discussion and Personality Improvement is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of Group Discussion and Personality Improvement is made integral part of all CNC Operator for Certificate Course In Turning under MSME (NSQF).

- 1. To develop communication competence in prospective students.
- 2. To enable them to convey thoughts and ideas with clarity and focus.
- 3. To develop report writing skills.
- 4. To equip them to face interview & Group Discussion.
- 5. To inculcate critical thinking process.
- 6. To prepare them on problem solving skills.
- 7. To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- 8. To create an awareness on Engineering Ethics and Human Values.
- 9. To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- 10. To learn leadership qualities and practice them.

Theory: Group Discussion and Personality Improvement

Topic and Contents	Hours	Marks
Topic 1: Communication Skill		
Objective:		
Listening Skills		
Writing Skills		
Technical Writing		
Letter Writing	11	25
Job Application	11	25
Report Writing		
Communication Skill : Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.		
Topic 2: Critical Thinking & Problem Solving		
Objective:		
Lateral thinking		
Critical thinking		
Multiple Intelligence	11	25
Problem Solving		
Six thinking hats Mind Mapping & Analytical Thinking		
Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple		
Intelligence, Problem Solving, Six thinking hats Mind Mapping & Analytical Thinking.		
Topic 3: Teamwork		
Objective:		
Team formation process		
Stages of Group	12	25
Group Dynamics		
Managing Team Performance & Team Conflicts		
Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group,		
Group Dynamics, Managing Team Performance & Team Conflicts.		
Topic 4: Ethics, Moral & Professional Values		
Objective:	12	25
Human Values		

Civic Rights	
Operator Ethics	
Operator as Social Experimentation	
Environmental Ethics	
Global Issues	
Code of Ethics like ASME, ASCE, IEEE.	
Ethics, Moral & Professional Values: Human Values, Civic Rights, Operator Ethics, Operator	
as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME,	
ASCE, IEEE.	

Books: Group Discussion and Personality Improvement

SI. No.	Author	Title	Publisher
1	Patricia Prendiville	Developing Facilitation Skills	Combat Poverty Agency
2	Dr.Chandra Prasad Sreedhar & Mr.Oommen Mathew	TRAINING MODULE ON PERSONALITY DEVELOPMENT	Department of Personnel & Training Government of India & U.N.D.P
3	Ann-Marie Nazzaro, Joyce Strazzabosco	GROUP DYNAMICS AND TEAM BUILDING	HEMOPHILIA ORGANIZATION DEVELOPMENT

COURSE NAME: CNC TURNING PROGRAMMING AND CNC MACHINING - THEORY

COURSE CODE: CCCT-10

COURSE OUTCOMES:

After completion of course Student should be able to:

- Explain applications and advantages of CNC machines and technology
- Demonstrate and explain various CNC control Calculate technological data for CNC machining
- The importance and use of PPE's
- Prepare and understand line program for various profiles Identify and set parameters for various simulators
- Prepare programs , demonstrate , simulate and operate CNC lathe machines for various machining operations

THEORY HOURS: 46	PRACTICAL HOURS: 140	THEORY MARKS: -40	PRACTICAL MARKS:
------------------	----------------------	-------------------	------------------

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
UNIT-I	Introduction to CNC technology and CNC programing	After completion of unit Student should be able to Explain applications and advantages of CNC machines and technology Understand and explain difference between conventional & non- conventional & non- conventional machine tool Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's	Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Ws. non- conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC Basic health and safety CNC programming basics. Introduction to manual NC programming Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.	18	15

	CNC	After completion of unit	Introduction to CNC			
UNIT-II	CNC Programing	 After completion of unit Student should be able to Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations 	Introduction to CNC programming Introduction and demonstration of line programs CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC, & Controls through post processors. Programming exercise. Machining of programmed	14	15	
UNIT-III	CNC Machining – Lathe	 After completion of unit Student should be able to Optimize parameters for turning operations Analyze the parameters of lathe operations Explain operation sequence for the lathe operations Prepare operation sequence for test run Set , Simulate, and perform various operations like turning , grooving threading etc 	exercise on CNC lathe machines. Plan and optimize programs for CNC turning operations. Calculate parameters like speed feed etc. and set a references for the various operations Prepare operation and operation sequence for the lathe operations like turning, grooving etc. Prepare & set CNC lathe operations and test run programmed Execute program and inspect simple geometrical forms / standard parts Use of various PPE's on CNC lathe machine	14	10	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : CNC TURNING PROGRAMMING AND CNC MACHINING - Theory

Course Code : CCCT-10

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
46	-	02	40	-	40

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read CNC TURNING PROGRAMMING AND CNC MACHINING - THEORY is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus CNC PROGRAMMING AND CNC MACHINING - THEORY is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of CNC TURNING PROGRAMMING AND CNC MACHINING - THEORY is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Explain applications and advantages of CNC machines and technology
- 2. Demonstrate and explain various CNC control Calculate technological data for CNC machining
- 3. The importance and use of PPE's
- 4. Prepare and understand line program for various profiles Identify and set parameters for various simulators
- 5. Prepare programs , demonstrate , simulate and operate CNC lathe machines for various machining operations

Theory: CNC TURNING PROGRAMMING AND CNC MACHINING

Topic and Contents	Hours	Marks
Topic 1: Introduction to CNC technology and CNC programing		
Objective:		
Explain applications and advantages of CNC machines and technology		
Understand and explain difference between conventional & non-conventional		
machine tool		
Demonstrate and explain various CNC control		
Calculate technological data for CNC machining		
Explain the JH system, its use and application		
Understand the importance and use of PPE's	18	10
Introduction to CNC technology – CNC machines & controls. History & development of CNC		
technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC		
machine tools CNC control and CNC Control and types of CNC control, Calculation of		
technological data for CNC machining. CNC clamping system. Implementation of JH for CNC,		
Basic health and safety, CNC programming basics. Introduction to manual NC programming,		
Manual NC programming for lathe machines. Application Numerical Control, Advantages, &		
Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics		
on CNC Machine.		
Topic 2: CNC Programing		
Objective:		
Understand and explain the concept and importance of CNC programming		
Prepare and understand line program for various profiles		
Identify and set parameters for various simulators		
Prepare and simulate various operation cycles for lathe		
Use and simulate cycles using various Controls		
Annalise parameters for various machining cycles and operations		
Introduction to CNC programming, Introduction and demonstration of line programs, CNC	14	15
programming for lathe machine using iso codes into the CNC simulator. CNC programming		
for lathe machines using different machining cycles into the CNC simulator. Procedures		
Associated with part programming, Cutting process parameter selection, Process planning		
issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms,		
Tool compensations Exposure for programming and simulator of FANUC & Controls through		
post processors. Programming exercise. Machining of programmed exercise on CNC lathe		
machines.		

Topic 3: CN	IC Machining – Lathe		
Objective:			
\succ	Optimize parameters for turning operations		
\succ	Analyze the parameters of lathe operations		
\succ	Explain operation sequence for the lathe operations		
\succ	Prepare operation sequence for test run		
\succ	Set , Simulate, and perform various operations like turning , grooving threading	14	15
	etc		
Plan and c	ptimize programs for CNC turning operations. Calculate parameters like speed		
feed etc. a	nd set a references for the various operations, Prepare operation and operation		
sequence	for the lathe operations like turning, grooving etc. Prepare & set CNC lathe		
operations	and test run programmed, Execute program and inspect simple geometrical		
forms / sta	ndard parts, Use of various PPE's on CNC lathe machine.		

Books: CNC TURNING PROGRAMMING AND CNC MACHINING

SI. No.	Author	Title	Publisher
1	Alan Overby	CNC Machining Handbook: Building, Programming, and Implementation	McGraw-Hill Education TAB; 1
2	Peter Smid	CNC Programming Handbook	Industrial Press Inc
3	James A. Harvey	CNC Trade Secrets	Industrial Press Inc
4	Steve Krar / Arthur Gill	Computer Numerical Control Programming Basics	INDUSTRIAL PRESS, INC.

COURSE NAME: CNC TURNING PROGRAMMING AND CNC MACHINING - PRACTICAL

COURSE CODE: CCCT-11

COURSE OUTCOMES:

After completion of course Student should be able to:

- Explain applications and advantages of CNC machines and technology
- Demonstrate and explain various CNC control Calculate technological data for CNC machining
- The importance and use of PPE's
- Prepare and understand line program for various profiles Identify and set parameters for various simulators
- Prepare programs , demonstrate , simulate and operate CNC lathe machines for various machining operations

THEORY HOURS: 46	PRACTICAL HOURS: 140	THEORY MARKS: -40	PRACTICAL MARKS:
------------------	----------------------	-------------------	------------------

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
UNIT-I	Introduction to CNC technology and CNC programing	 After completion of unit Student should be able to Explain applications and advantages of CNC machines and technology Understand and explain difference between conventional & non- conventional & non- conventional machine tool Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's 	Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC Basic health and safety CNC programming basics. Introduction to manual NC programming Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.	40	20

	CNC	After completion of unit	Introduction to CNC			
UNIT-II	CNC Programing	 After completion of unit Student should be able to Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations 	Introduction to CNC programming Introduction and demonstration of line programs CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC, & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe machines.	50	20	
UNIT-III	CNC Machining – Lathe	 After completion of unit Student should be able to Optimize parameters for turning operations Analyze the parameters of lathe operations Explain operation sequence for the lathe operations Prepare operation sequence for test run Set , Simulate, and perform various operations like turning , grooving threading etc 	Plan and optimize programs for CNC turning operations. Calculate parameters like speed feed etc. and set a references for the various operations Prepare operation and operation sequence for the lathe operations like turning, grooving etc. Prepare & set CNC lathe operations and test run programmed Execute program and inspect simple geometrical forms / standard parts Use of various PPE's on CNC lathe machine	50	20	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : CNC TURNING PROGRAMMING AND CNC MACHINING - PRACTICAL

Course Code : CCCT-11

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
-	140	04	-	60	60

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read CNC TURNING PROGRAMMING AND CNC MACHINING - THEORY is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus CNC PROGRAMMING AND CNC MACHINING - THEORY is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of CNC TURNING PROGRAMMING AND CNC MACHINING - THEORY is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Explain applications and advantages of CNC machines and technology
- 2. Demonstrate and explain various CNC control Calculate technological data for CNC machining
- 3. The importance and use of PPE's
- 4. Prepare and understand line program for various profiles Identify and set parameters for various simulators
- 5. Prepare programs , demonstrate , simulate and operate CNC lathe machines for various machining operations

Practical: CNC TURNING PROGRAMMING AND CNC MACHINING

Topic 1: Introduction to CNC technology and CNC programing Objective: Explain applications and advantages of CNC machines and technology Understand and explain difference between conventional & non-conventional machine tool Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's Understand the importance and use of PPE's Understand the importance and use of PPE's Understand the CNC control and types of CNC control, Calculation of technology. Conventional VS. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC control and types of CNC control, Calculation of technological data for CNC machine, CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Prepare and understand line program for various profiles Identify and set parameters for various simulators P repare and simulate various operation cycles for lathe Use and simulate various operation cycles for lathe Use and simulate various operation cycles for lathe Use and simulate various does into the CNC simulator. CNC programming for lathe machine using iso codes into the CNC simulator. Proceedures Associated with part progra	Topic and Contents	Hours	Marks
 Explain applications and advantages of CNC machines and technology Understand and explain difference between conventional & non-conventional machine tool Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's Understand the inportance and use of PPE's Understand the CNC control and types of CNC control. Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate various operation cycles and operations Introduction to CNC programming, Untroduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Procedures Associated with part programming, Cutting process parameter selection, Procedures Associated with part programming, Cutting process parameter selection, Procedures parameters for programming and simulator of FANUC & Control sthrough post processors. Programming exercise. M	Topic 1: Introduction to CNC technology and CNC programing		
 Understand and explain difference between conventional & non-conventional machine tool Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's Understand the importance and use of PPE's Introduction to CNC technology – CNC machines & controls. History & development of CNCC technology. Conventional VS. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC control and types of CNC control, Calculation of technological data for CNC machines. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using is codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 	Objective:		
machine toolDemonstrate and explain various CNC control40Calculate technological data for CNC machining4020Introduction to CNC technology – CNC machines & controls. History & development of CNC4020Introduction to CNC technology – CNC machines & controls. History & development of CNC4020machine tools CNC control and CNC Control and types of CNC control, Calculation of4020machine tools CNC control and CNC Control and types of CNC control, Calculation of4020machine tools CNC control and CNC Control and types of CNC control, Calculation of4020machine tools CNC control spystem. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.40Topic 2: CNC Programing Objective:>5020>Understand and explain the concept and importance of CNC programming > Prepare and simulate various operation cycles for lathe > Use and simulate various operation cycles for lathe > Use and simulate cycles using various Controls5020Programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming	Explain applications and advantages of CNC machines and technology		
 Demonstrate and explain various CNC control Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's Understand the importance and use of PPE's Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Prepare and understand line program for various profiles Identify and set parameters for various simulators P repare and simulate various operation cycles for lathe Use and simulate various operation cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Proceedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 	Understand and explain difference between conventional & non-conventional		
 Calculate technological data for CNC machining Explain the JH system, its use and application Understand the importance and use of PPE's Understand the importance and use of PPE's Introduction to CNC technology – CNC machines & controls. History & development of CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators P repare and simulate various operation cycles for lathe Use and simulate various operation cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 	machine tool		
 Explain the JH system, its use and application Understand the importance and use of PPE's Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Prepare and understand line program for various profiles Identify and set parameters for various simulators P repare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Proceedures Associated with part programming, cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming ad simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 	Demonstrate and explain various CNC control		
 Understand the importance and use of PPE's Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming of programmed exercise on CNC lathe 	Calculate technological data for CNC machining		
Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: • Understand and explain the concept and importance of CNC programming • Prepare and understand line program for various profiles • Identify and set parameters for various simulators • Prepare and simulate various operation cycles for lathe • Use and simulate various operation cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machine using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning for lathe machines Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe	Explain the JH system, its use and application		
technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe		40	20
 machine tools CNC control and CNC Control and types of CNC control, Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
technological data for CNC machining. CNC clamping system. Implementation of JH for CNC, Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective:			
Basic health and safety, CNC programming basics. Introduction to manual NC programming, Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine. Topic 2: CNC Programing Objective: 			
Manual NC programming for lathe machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.Topic 2: CNC Programing Objective: > Understand and explain the concept and importance of CNC programming > Prepare and understand line program for various profiles > Identify and set parameters for various simulators > Prepare and simulate various operation cycles for lathe > Use and simulate cycles using various Controls > Annalise parameters for various machining cycles and operations5020Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe50			
Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.Topic 2: CNC Programing Objective: > Understand and explain the concept and importance of CNC programming > Prepare and understand line program for various profiles > Identify and set parameters for various simulators > Prepare and simulate various operation cycles for lathe > Use and simulate cycles using various Controls > Annalise parameters for various machining cycles and operations5020Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe			
on CNC Machine.Topic 2: CNC ProgramingObjective:> Understand and explain the concept and importance of CNC programming> Prepare and understand line program for various profiles> Identify and set parameters for various simulators> Prepare and simulate various operation cycles for lathe> Use and simulate cycles using various Controls> Annalise parameters for various machining cycles and operationsIntroduction to CNC programming, Introduction and demonstration of line programs, CNCprogramming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe			
Topic 2: CNC ProgramingObjective:> Understand and explain the concept and importance of CNC programming> Prepare and understand line program for various profiles> Identify and set parameters for various simulators> Prepare and simulate various operation cycles for lathe> Use and simulate cycles using various Controls> Annalise parameters for various machining cycles and operationsIntroduction to CNC programming, Introduction and demonstration of line programs, CNCprogramming for lathe machine using iso codes into the CNC simulator. CNC programmingfor lathe machines using different machining cycles into the CNC simulator. ProceduresAssociated with part programming, Cutting process parameter selection, Process planningissues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms,Tool compensations Exposure for programming and simulator of FANUC & Controls throughpost processors. Programming exercise. Machining of programmed exercise on CNC lathe			
Objective:> Understand and explain the concept and importance of CNC programming> Prepare and understand line program for various profiles> Identify and set parameters for various simulators> Prepare and simulate various operation cycles for lathe> Use and simulate cycles using various Controls> Annalise parameters for various machining cycles and operationsIntroduction to CNC programming, Introduction and demonstration of line programs, CNCprogramming for lathe machine using iso codes into the CNC simulator. CNC programmingfor lathe machines using different machining cycles into the CNC simulator. ProceduresAssociated with part programming, Cutting process parameter selection, Process planningissues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms,Tool compensations Exposure for programming and simulator of FANUC & Controls throughpost processors. Programming exercise. Machining of programmed exercise on CNC lathe			
 Understand and explain the concept and importance of CNC programming Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machine using iso codes into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
 Prepare and understand line program for various profiles Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 	-		
 Identify and set parameters for various simulators Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
 Prepare and simulate various operation cycles for lathe Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
 Use and simulate cycles using various Controls Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
 Annalise parameters for various machining cycles and operations Introduction to CNC programming, Introduction and demonstration of line programs, CNC programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe 			
Introduction to CNC programming, Introduction and demonstration of line programs, CNC5020programming for lathe machine using iso codes into the CNC simulator. CNC programming5020for lathe machines using different machining cycles into the CNC simulator. Procedures44Associated with part programming, Cutting process parameter selection, Process planning5020issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms,505020Tool compensations Exposure for programming and simulator of FANUC & Controls through505020post processors. Programming exercise. Machining of programmed exercise on CNC lathe505020			
programming for lathe machine using iso codes into the CNC simulator. CNC programming for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe		50	20
for lathe machines using different machining cycles into the CNC simulator. Procedures Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe		50	20
Associated with part programming, Cutting process parameter selection, Process planning issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe			
issues and path planning, G & M Codes, Interpolations, Canned Cycles and Subprograms, Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe			
Tool compensations Exposure for programming and simulator of FANUC & Controls through post processors. Programming exercise. Machining of programmed exercise on CNC lathe			
post processors. Programming exercise. Machining of programmed exercise on CNC lathe			

Topic 3: CN	IC Machining – Lathe						
Objective:							
\succ	Optimize parameters for turning operations						
\succ	Analyze the parameters of lathe operations						
\triangleright	Explain operation sequence for the lathe operations						
\triangleright	Prepare operation sequence for test run						
\triangleright	Set, Simulate, and perform various operations like turning, grooving threading	50	20				
	etc						
Plan and c	pptimize programs for CNC turning operations. Calculate parameters like speed						
feed etc. a	nd set a references for the various operations, Prepare operation and operation						
sequence	for the lathe operations like turning, grooving etc. Prepare & set CNC lathe						
operations	operations and test run programmed, Execute program and inspect simple geometrical						
forms / sta	ndard parts, Use of various PPE's on CNC lathe machine.						

Books: CNC TURNING PROGRAMMING AND CNC MACHINING

SI. No.	Author	Title	Publisher
1	Alan Overby	CNC Machining Handbook: Building, Programming, and Implementation	McGraw-Hill Education TAB; 1
2	Peter Smid	CNC Programming Handbook	Industrial Press Inc
3	James A. Harvey	CNC Trade Secrets	Industrial Press Inc
4	Steve Krar / Arthur Gill	Computer Numerical Control Programming Basics	INDUSTRIAL PRESS, INC.

COURSE NAME: Employability Skill-Theory

COURSE CODE: CCCT-12

COURSE OUTCOMES:

After completion of course Student should be able to

- Interact effectively with co-workers and customers.
- Make persons excellent workers and suitable to work in a team.
- Develop Resumes or curriculum vita.
- Operated computer with MS office tool
- Access internet and web browsing.
- Personal safety and work ethics.
- Overcome communication barriers.

THEORY HOURS: 22 PR

PRACTICAL HOURS: 22

THEORY MARKS: 40

PRACTICAL MARKS:

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
Unit I	English Literacy Reading/ Writing	After completion of unit Student should be able to Understand simple sentence. Write simple sentence Develop curriculum vita, Letters of application	Reading and understanding simple sentences about self, work and environment Construction of simple sentences Writing simple English. Develop Resumes or curriculum vita. Letters of application reference to previous communication.	06	10
Unit II	nit II Motivational Training After completion of unit Student should be able to Behavioral Skills • Confidence building attitude. Personal goal setting • Under stand of work ethics and teamwork.		Characteristics Essential to Achieving Success The Power of Positive Attitude Self awareness Importance of Commitment Ethics and Values Ways to Motivate Oneself Personal Goal setting and Employability Planning Problem Solving	06	10

Unit III	Unit IIIAfter completion of unit Student should be able toHealthStudent should be able toUse of Accident Prevention techniques.Use of protective equipment.Understanding of Occupation safety.		Introduction to Occupational Safety and Health importance of safety and health at workplace Basic Hazards, Chemical Hazards, Vibroacoustic Hazards, Mechanical Hazards, Electrical Hazards, Thermal Hazards. Occupational health, Occupational hygienic, Occupational Diseases/ Disorders & its prevention Basic principles for protective equipment. Accident Prevention techniques – control of accidents and safety measures.		10	
Unit IV	Concept of Entreneurship	 After completion of unit Student should be able to Process of setting up a business Knowledge of Project report Processes of Bank Ioan 	Entrepreneur – Entrepreneurship – Enterprises:- Conceptual issue Entrepreneurship vs. management, Entrepreneurial motivation. Performance & Record, Role & Function of Preparation of Project. Role of Various Schemes and Institutes for self-employment i.e. DIC, SIDA, SISI, NSIC, SIDO, Idea for financing/ non financing support agencies to familiarizes with the Policies /Programmes & procedure & the available scheme.	05	10	

Program Name : CERTIFICATE COURSE IN CNC TURNING

Course Title : Employability Skill- Theory

Course Code : CCCT-12

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
22	-	02	40	-	40

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read CNC TURNING PROGRAMMING - On job training is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus CNC TURNING PROGRAMMING - On job training is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of CNC TURNING PROGRAMMING - On job training is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Interact effectively with co-workers and customers.
- 2. Make persons excellent workers and suitable to work in a team.
- 3. Develop Resumes or curriculum vita.
- 4. Operated computer with MS office tool
- 5. Access internet and web browsing.
- 6. Personal safety and work ethics.
- 7. Overcome communication barriers.

Theory: Employability Skill

Topic and Contents	Hours	Marks
Topic 1: English Literacy Reading/Writing		
Objective:		
Understand simple sentence.		
Write simple sentence		
Develop curriculum vita, Letters of application	06	10
Reading and understanding simple sentences about self, work and environment,		
Construction of simple sentences, Writing simple English. Develop Resumes or		
curriculum vita. Letters of application reference to previous communication.		
Topic 2: Motivational Training Behavioral Skills		
Objective:		
Confidence building attitude.		
Personal goal setting	06	10
Under stand of work ethics and teamwork.	00	10
Characteristics Essential to Achieving, Success, The Power of Positive Attitude, Self		
awareness, Importance of Commitment, Ethics and Values, Ways to Motivate Oneself,		
Personal Goal setting and Employability Planning, Problem Solving.		
Topic 3: Safety & Health		
Objective:		
Use of Accident Prevention techniques.		
Use of protective equipment.		
Understanding of Occupation safety.		10
Introduction to Occupational Safety and Health importance of safety and health at	05	10
workplace, Basic Hazards, Chemical Hazards, Vibroacoustic Hazards, Mechanical Hazards,		
Electrical Hazards, Thermal Hazards. Occupational health, Occupational hygienic,		
Occupational Diseases/ Disorders & its prevention, Basic principles for protective		
equipment. Accident Prevention techniques – control of accidents and safety measures.		
Topic 4: Concept of Entreneurship		
Objective:		
Process of setting up a business	05	10
Knowledge of Project report		
Processes of Bank loan		

Entrepreneur – Entrepreneurship – Enterprises:- Conceptual issue, Entrepreneurship vs.	
management, Entrepreneurial motivation. Performance & Record, Role & Function of	
Preparation of Project. Role of Various Schemes and Institutes for self-employment i.e.	
DIC, SIDA, SISI, NSIC, SIDO, Idea for financing/ non financing support agencies to	
familiarizes with the Policies /Programmes & procedure & the available scheme.	

Books: Employability Skill

SI. No.	Author	Title	Publisher
1	Neelkanth	Employability Skills	Neelkantha
2	C.SubhasKapil Dev	Employability Skills	Asian Publishers
3	R.T.UparathR.H.Patil	Rogar Shamta koushlya	Amul publisher
4	C. Subhas	Self employment&enterpreneurship	New asinpiblishers Delhi
5	R.T.Uprath	Employablility Skill	Amul

COURSE NAME: Employability Skill - Practical

COURSE CODE: CCCT-13

COURSE OUTCOMES:

After completion of course Student should be able to

- Interact effectively with co-workers and customers.
- Make persons excellent workers and suitable to work in a team.
- Develop Resumes or curriculum vita.
- Operated computer with MS office tool
- Access internet and web browsing.
- Personal safety and work ethics.
- Overcome communication barriers.

THEORY HOURS: 22

PRACTICAL HOURS: 22

THEORY MARKS:

PRACTICAL MARKS: 60

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hours	Marks
Literacy Reading/ WritingStudent should be able tosenter envir envirWriting• Understand simple 		Reading and understanding simple sentences about self, work and environment Construction of simple sentences Writing simple English. Develop Resumes or curriculum vita. Letters of application reference to previous communication.	06	15	
Unit II	application application After completion of unit Student should be able to Behavioral Skills Personal goal setting Under stand of work ethtics and		Characteristics Essential to Achieving Success The Power of Positive Attitude Self awareness Importance of Commitment Ethics and Values Ways to Motivate Oneself Personal Goal setting and Employability Planning Problem Solving	06	15

Unit III	IISafety & HealthStudent should be able toHealth importance of safety and health at workplace• Use of Accident 		health at workplace Basic Hazards, Chemical Hazards, Vibroacoustic Hazards, Mechanical Hazards, Electrical Hazards, Thermal Hazards. Occupational health, Occupational hygienic, Occupational Diseases/ Disorders & its prevention Basic principles for protective equipment. Accident Prevention techniques –	05	15	
Unit IV	Concept of Entreneurshi	 After completion of unit Student should be able to Process of setting up a business Knowledge of Project report Processes of Bank loan 	Entrepreneur – Entrepreneurship – Enterprises:- Conceptual issue Entrepreneurship vs. management, Entrepreneurial motivation. Performance & Record, Role & Function of Preparation of Project. Role of Various Schemes and Institutes for self-employment i.e. DIC, SIDA, SISI, NSIC, SIDO, Idea for financing/ non financing support agencies to familiarizes with the Policies /Programmes & procedure & the available scheme.	05	15	

Program Name : CERTIFICATE COURSE IN CNC MILIING

Course Title : Employability Skill- Practical

Course Code : CCCT-13

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
-	22	02	-	60	60

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read CNC TURNING PROGRAMMING - On job training is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus CNC TURNING PROGRAMMING - On job training is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of CNC TURNING PROGRAMMING - On job training is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

COURSE OUTCOMES:

- 1. Interact effectively with co-workers and customers.
- 2. Make persons excellent workers and suitable to work in a team.
- 3. Develop Resumes or curriculum vita.
- 4. Operated computer with MS office tool
- 5. Access internet and web browsing.
- 6. Personal safety and work ethics.
- 7. Overcome communication barriers.

Practical: Employability Skill

Topic and Contents	Hours	Marks
Topic 1: English Literacy Reading/Writing		
Objective:		
Understand simple sentence.		
Write simple sentence		
Develop curriculum vita, Letters of application	06	15
Reading and understanding simple sentences about self, work and environment,		
Construction of simple sentences, Writing simple English. Develop Resumes or		
curriculum vita. Letters of application reference to previous communication.		
Topic 2: Motivational Training Behavioral Skills		
Objective:		
Confidence building attitude.		
Personal goal setting	06	15
Under stand of work ethics and teamwork.	00	15
Characteristics Essential to Achieving, Success, The Power of Positive Attitude, Self		
awareness, Importance of Commitment, Ethics and Values, Ways to Motivate Oneself,		
Personal Goal setting and Employability Planning, Problem Solving.		
Topic 3: Safety & Health		
Objective:		
Use of Accident Prevention techniques.		
Use of protective equipment.		
Understanding of Occupation safety.		15
Introduction to Occupational Safety and Health importance of safety and health at	05	12
workplace, Basic Hazards, Chemical Hazards, Vibroacoustic Hazards, Mechanical Hazards,		
Electrical Hazards, Thermal Hazards. Occupational health, Occupational hygienic,		
Occupational Diseases/ Disorders & its prevention, Basic principles for protective		
equipment. Accident Prevention techniques – control of accidents and safety measures.		
Topic 4: Concept of Entreneurship		
Objective:		
Process of setting up a business	05	15
Knowledge of Project report		
Processes of Bank loan		

Entrepreneur – Entrepreneurship – Enterprises:- Conceptual issue, Entrepreneurship vs.	
management, Entrepreneurial motivation. Performance & Record, Role & Function of	
Preparation of Project. Role of Various Schemes and Institutes for self-employment i.e.	
DIC, SIDA, SISI, NSIC, SIDO, Idea for financing/ non financing support agencies to	
familiarizes with the Policies /Programmes & procedure & the available scheme.	

Books: Employability Skill

SI. No.	Author	Title	Publisher
1	Neelkanth	Employability Skills	Neelkantha
2	C.SubhasKapil Dev	Employability Skills	Asian Publishers
3	R.T.UparathR.H.Patil	Rogar Shamta koushlya	Amul publisher
4	C. Subhas	Self employment&enterpreneurship	New asinpiblishers Delhi
5	R.T.Uprath	Employablility Skill	Amul

COURSE NAME: CNC TURNING PROGRAMMING - On job training

COURSE CODE: CCCT-14

COURSE OUTCOMES:

After completion of course Student should be able to:

- Explain applications and advantages of CNC machines and technology
- Demonstrate and explain various CNC control Calculate technological data for CNC machining
- The importance and use of PPE's
- Prepare line program for various profiles Identify and set parameters for various simulators
- Prepare programs, demonstrate, simulate and operate CNC Turning machines for various machining operations

THEORY	(HOURS: 0	PRACTICAL HOURS: 104	THEORY MARKS: PR	RACTICAL MAP	RKS: 100
Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hours	Marks
UNIT-I	CNC TURNING PROGRAM MING - On Job Training	After completion of unit Student should be able to Explain applications and advantages of CNC machines and technology Understand and explain difference	Introduction to CNC technolog CNC machines & controls. History & development of (technology. Conventional Vs. non-convention machine tool. Numerical control on CNC mach tools CNC control and CNC Con and types of CNC control	CNC onal nine	100

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	PR hours	Marks
UNIT-I	CNC TURNING PROGRAM MING - On Job Training	After completion of unit Student should be able to • Explain applications and advantages of CNC machines and technology • Understand and explain difference between conventional & non-conventional machine tool • Demonstrate and explain various CNC control • Calculate technological data for CNC machining • Understand the importance and use of PPE's • Industrial culture	Introduction to CNC technology – CNC machines & controls. History & development of CNC technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC machine tools CNC control and CNC Control and types of CNC control Calculation of technological data for CNC machining. CNC clamping system. Implementation of JH for CNC Basic health and safety CNC programming basics. Introduction to manual NC programming Manual NC programming for Turning machines. Application Numerical Control, Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above sub topics on CNC Machine.	104	100

Program Name : CERTIFICATE COURSE IN CNC TURNING & TURNING

Course Title : CNC TURNING PROGRAMMING - On job training

Course Code : CCCT-14

Teaching and Examination Scheme:

Teaching Scheme		Examination Scheme			
ТН	PR	PAPER HRS	TH	PR	TOTAL
-	104	04	-	100	100

Rationale:

Success & Sustainability of any Training System depends upon given other things, availability of good quality instructors. An Instructor should possess, besides trade skills, "Skills to Transfer Skills". To cope up this quality possession of core skills is imperative.

Ability to read CNC TURNING PROGRAMMING - On job training is essential to perform a job / task of CNC Operator. It is the skills set which enables comprehending the given job and subsequent planning to complete the task/job. Thus it is regarded as core skills for all CNC Operator.

Similarly, knowledge of basic scientific principles creates the foundation for acquiring hard skills. It is the initial/inherent knowledge set which enables analyzing the given job and subsequent detail planning; Such as selecting proper physical conditions e.g. Temperature for a heat treatment process, Material of cutting tool etc.

Similarly, ability to perform simple calculations also creates the foundation for proper hard skills. It is the inherent knowledge set which enables to analyse the given job - Quantitatively and subsequent detail planning; Such as selecting the physical conditions quantitatively e.g. speed and feed of a cutting operation.

Thus CNC TURNING PROGRAMMING - On job training is regarded as a core skill set which supplement hard skill in all CNC Operator.

Recognizing this importance of the core skill, the subjects of CNC TURNING PROGRAMMING - On job training is made integral part of all CNC Operator for Certificate Course In CNC Turning under MSME (NSQF).

- 1. Explain applications and advantages of CNC machines and technology
- 2. Demonstrate and explain various CNC control Calculate technological data for CNC machining
- 3. The importance and use of PPE's
- 4. Prepare line program for various profiles Identify and set parameters for various simulators
- 5. Prepare programs, demonstrate, simulate and operate CNC Turning machines for various machining operations

Practical: CNC PROGRAMMING AND CNC MACHINING - On job training

Topic and Contents	Hours	Marks
Topic 1: CNC TURNING PROGRAMMING - On Job Training		
Objective:		
Explain applications and advantages of CNC machines and technology		
Understand and explain difference between conventional & non-conventional machine tool		
Demonstrate and explain various CNC control		
Calculate technological data for CNC machining		
Understand the importance and use of PPE's		
Industrial culture	104	100
Introduction to CNC technology – CNC machines & controls. History & development of CNC		
technology. Conventional Vs. non-conventional machine tool. Numerical control on CNC		
machine tools CNC control and CNC Control and types of CNC control, Calculation of		
technological data for CNC machining. CNC clamping system. Implementation of JH for CNC,		
Basic health and safety, CNC programming basics. Introduction to manual NC programming,		
Manual NC programming for lathe & Turning machines. Application Numerical Control,		
Advantages, & Disadvantages, Adoptive Control System. Practical training & workshop for above		
sub topics on CNC Machine.		

Books: CNC TURNING PROGRAMMING AND CNC MACHINING

SI. No.	Author	Title	Publisher
1	Alan Overby	CNC Machining Handbook: Building, Programming, and Implementation	McGraw-Hill Education TAB; 1
2	Peter Smid	CNC Programming Handbook	Industrial Press Inc
3	James A. Harvey	CNC Trade Secrets	Industrial Press Inc
4	Steve Krar / Arthur Gill	Computer Numerical Control Programming Basics	INDUSTRIAL PRESS, INC.